
D3: A Dynamic Deadline-Driven Approach for Building
Autonomous Vehicles

Ionel Gog
UC Berkeley

Sukrit Kalra
UC Berkeley

Peter Schafhalter
UC Berkeley

Joseph E. Gonzalez
UC Berkeley

Ion Stoica
UC Berkeley

Abstract
Autonomous vehicles (AVs) must drive across a variety of
challenging environments that impose continuously-varying
deadlines and runtime-accuracy tradeoffs on their software
pipelines. A deadline-driven execution of such AV pipelines
requires a new class of systems that enable the computation
to maximize accuracy under dynamically-varying deadlines.
Designing these systems presents interesting challenges that
arise from combining ease-of-development of AV pipelines
with deadline specification and enforcement mechanisms.

Our work addresses these challenges through D3 (Dynamic
Deadline-Driven), a novel execution model that centralizes
the deadline management, and allows applications to adjust
their computation by modeling missed deadlines as excep-
tions. Further, we design and implement ERDOS, an open-
source realization of D3 for AV pipelines that exposes fine-
grained execution events to applications, and provides mecha-
nisms to speculatively execute computation and enforce dead-
lines between an arbitrary set of events. Finally, we address
the crucial lack of AV benchmarks through our state-of-the-
art open-source AV pipeline, Pylot, that works seamlessly
across simulators and real AVs. We evaluate the efficacy of
D3 and ERDOS by driving Pylot across challenging driving
scenarios spanning 50km, and observe a 68% reduction in
collisions as compared to prior execution models.

CCS Concepts: • Computer systems organization → Het-
erogeneous (hybrid) systems; Special purpose systems.

ACM Reference Format:
Ionel Gog, Sukrit Kalra, Peter Schafhalter, Joseph E. Gonzalez,
and Ion Stoica. 2022. D3: A Dynamic Deadline-Driven Approach
for Building Autonomous Vehicles. In Seventeenth European Confer-
ence on Computer Systems (EuroSys ’22), April 5–8, 2022, Rennes,
France. ACM, New York, NY, USA, 19 pages. https://doi.org/10.
1145/3492321.3519576

EuroSys ’22, April 5–8, 2022, Rennes, France
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9162-7/22/04.
https://doi.org/10.1145/3492321.3519576

1 Introduction
The National Highway Traffic Safety Administration [4], ex-
pects advances in autonomous vehicles (AVs) to: (i) reduce
human error from traffic accidents, which made up for 94%
of the 37,133 vehicle related deaths in the U.S. in 2017 [75],
(ii) increase traffic flow, which could free up as much as 50
minutes per person per day [73], and (iii) provide new employ-
ment opportunities to around 2 million people with disabil-
ities [46]. Despite the potential benefits and investment [5],
AV systems research is still in its infancy [12, 14–16, 27, 61].

While most AV research has focused on the models and
algorithms that underpin the perception, planning and control
decisions, there has been little work on the software sys-
tems that support their execution. To safely drive in complex
environments, AVs must ensure highly-accurate results by ex-
ecuting complex pipelines with hundreds of computationally-
intensive algorithms and neural networks [95] using multiple
parallel processors and hardware accelerators [66]. As a result,
the software systems for AVs must support a deadline-driven
execution of such pipelines that allows them to maximize
their accuracy under a given deadline, which is complicated
by their two unique characteristics (discussed further in §2):
C1: Environment-dependent deadlines. AVs need to com-
plete their computation at varying timescales to safely drive
across the wide array of scenarios in the real-world. For ex-
ample, navigating a crowded urban street requires different
algorithms and can tolerate longer computation times than
swerving in response to an obstacle on the freeway [25, 45].
C2: Environment-dependent runtimes. The runtime of var-
ious stages of an AV pipeline like pedestrian tracking vary
with the input (e.g., the number of pedestrians). As a result,
these stages exhibit runtime-accuracy tradeoffs that must be
addressed dynamically according to the environment [44, 97].

The current state-of-the-art systems for autonomous driv-
ing (e.g., Autoware [28], Cruise [95], BMW [20] etc. [53, 94])
are built atop the Robot Operating System (ROS) [77]. ROS
was designed as an execution platform for enabling robotics
research, and achieves its key goal of supporting the construc-
tion of complex pipelines through its modular design [19]
and best-effort execution of the stages. However, these sys-
tems lack mechanisms to specify and enforce deadlines on
the computation thus precluding a deadline-driven execution
of an AV pipeline (C1), which is critical for vehicle safety.

453

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3492321.3519576
https://doi.org/10.1145/3492321.3519576
https://doi.org/10.1145/3492321.3519576
https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current#reproduced
https://www.acm.org/publications/policies/artifact-review-and-badging-current#available
https://www.acm.org/publications/policies/artifact-review-and-badging-current#functional

EuroSys ’22, April 5–8, 2022, Rennes, France Ionel Gog, Sukrit Kalra, Peter Schafhalter, Joseph E. Gonzalez, and Ion Stoica

Camera

LiDAR

GPS

IMU

30 Hz

⟳

Sensors

Object Detection Object Tracking

Tra�c Light
Detection

Tra�c Sign
Detection

Lane
Detection

Perception

Mapping Localization Algorithm

Localization

Prediction Planning Control

Motion
Prediction

Trajectory Planning Behavior Planning

Route Planning
Deadline

Deadline

Deadline

Deadline

End-to-End Deadline
Deadline

CPU

CPU Control
Algorithm

CPU

10 Hz

⟳
5 Hz

⟳
100 Hz

⟳

☺

CPU

CPU

CPU

G
PU

GPU GPU

G
PU

G
PU

G
PU

Figure 1. The architecture of a state-of-the-art AV pipeline. A modern AV uses multiple sensors to perceive the environment around it.
These sensor readings are used by the perception module to detect other agents, and by the localization module to compute the location of the
AV itself. The prediction module uses their output to predict the future trajectories of other agents, and the planning module computes a safe
and feasible trajectory for the AV using these predictions. Finally, the control module produces steering and acceleration commands.

Conversely, decades of work in cyber-physical systems has
produced sophisticated techniques for safety-critical appli-
cations that ensure the fulfillment of strict deadlines [32, 33,
36, 49, 56, 69]. However, these techniques require a compre-
hensive, time-consuming analysis of the schedulability of the
stages driven by estimates of their worst-case runtimes. Since
various stages of the pipeline exhibit environment-dependent
runtimes (C2), there exists a wide variance between their
average and worst-case runtimes. Thus, any schedulability
analysis driven by the latter is overly-conservative and leads
to an under-utilization of the compute resources, which could
be used to execute higher-accuracy algorithms and optimize
the runtime-accuracy tradeoff [44, 97] (elaborated in §3.1).

We posit that a new class of systems is required to enable
a deadline-driven execution of applications that must inter-
act with a continuously-evolving environment (e.g., robotics,
AVs), and exhibit C1-C2. Such systems must combine the
ease-of-development of state-of-the-art robotics platforms
with the deadline specification and enforcement mechanisms
of cyber-physical systems. Specifically, such systems must
enable applications to specify deadlines that evolve with the
environment (C1), and adapt their computation to such dead-
lines to maximize the runtime-accuracy tradeoff (C2).

Our work seeks to provide a general execution model
for such applications and propose the design of a proof-of-
concept system that realizes this model. To achieve this goal,
this paper makes the following two key contributions:
(A) We propose D3 (Dynamic Deadline-Driven), an execu-
tion model for applications that interact with a continuously-
evolving environment, and exhibit C1-C2. D3 decomposes
the application as a graph of computation along with a dead-
line policy, which determines the deadline according to the
environment (C1). While applications proactively try to meet
deadlines, D3 models missed deadlines due to C2 as excep-
tions and allows the execution of reactive measures. Further,
D3 notifies downstream computation about missed deadlines,
allowing it to eagerly execute on incomplete input or adjust
to fit in the reduced time upon arrival of the input (see §5.3).
(B) We design and implement ERDOS, a proof-of-concept
realization of D3 built specifically for AV pipelines. ERDOS
exposes fine-grained execution events to the application and
provides abstractions for the specification of dynamically-
varying deadlines that restrict the wall-clock time elapsed

between such events. ERDOS’ speculative execution mech-
anism then aims to fulfill a deadline by executing the ap-
propriate implementation automatically (see §5.3). However,
if deadlines are missed due to C2, ERDOS executes excep-
tion handlers that allow computation to convey intermediate
results to enable the execution of downstream computation.

The remainder of the paper elaborates on the contributions
that enable D3 and ERDOS, and is organized as follows:
(1) We introduce and underscore the importance of the two
unique characteristics of applications that interact with a
continuously-evolving environments (C1-C2) by analyzing
data collected from both our own real AV and the sensor data
released by multiple state-of-the-art AV vendors (§2).
(2) We elaborate on D3, a novel execution model that enables
such applications to maximize their accuracy (§3).
(3) We present the techniques that enable ERDOS to support
D3 (§4-§5) and provide the first open-source implementation
of a deadline-driven system built for AVs (§6).
(4) We address the crucial lack of AV benchmarks by provid-
ing the first open-source state-of-the-art AV pipeline, Pylot
(§7.1). Pylot works across simulators and real-vehicles, and
achieves the top score in a simulated AV challenge.
(5) We evaluate the efficacy of the dynamic deadline-driven
execution enabled by D3 and ERDOS by driving Pylot across
50 km of challenging driving scenarios in simulation (§7),
and observe a 68% reduction in collisions as compared to the
execution model of state-of-the-art robotics platforms.

2 Background and Motivation
An AV is equipped with multiple instances of sensors such as
cameras, LiDARs, radars etc., that complement each other and
enable the AV to build a representation of the environment [7–
9]. These sensors, operating at different frequencies, collec-
tively generate ∼ 1 GB/s of data, which is processed by a
computational pipeline consisting of five modules: perception,
localization, prediction, planning, and control (Fig. 1). These
modules are implemented by hundreds of components [95]
that execute atop several machines and accelerators [66, 72].

The perception module synchronizes the camera and Li-
DAR data streams and uses machine learning (ML) models to
detect pedestrians, vehicles, traffic signals, and lanes. These
detected objects along with the AV’s location (computed by
the localization module) are used by the prediction module

454

D3: A Dynamic Deadline-Driven Approach for Building Autonomous Vehicles EuroSys ’22, April 5–8, 2022, Rennes, France

0 10 20 30
Time [sec]

10

5Sc
en

ar
io

EDet1

EDet4

EDet7

(a) Object detection.

1 4 7 10
Number of agents tracked

0

200

400

600

R
un

tim
e

[m
s]

SORT
DeepSORT
DaSiamRPN

(b) Object tracking.

1 2 3 4 5
Prediction horizon [s]

50

100

150

200

R
un

tim
e

[m
s]

MFP
R2P2-MA

(c) Trajectory prediction.

125 200 500
Planning runtime [ms]

0

40

80

120

C
om

fo
rt

A
bs

.L
at

er
al

Je
rk

[m
/s

3]

(d) Trajectory planning.

Figure 2. No silver bullet. We underscore the need for dynamically-varying deadlines by showing that: the choice of the optimum object
detector varies widely both within and across driving scenarios (a), the runtimes of various components increase with an increased complexity
of the environment (b, c), and components benefit from an increased allocation of time, which leads to more comfortable rides (d).

to predict the trajectories of other vehicles and pedestrians,
and create a representation of the environment around the AV.
This representation is used by the planning module, which
first computes coarse-grained waypoints from the AV’s loca-
tion to the destination (using a route planner), and then refines
these waypoints to ensure a comfortable ride (e.g. by minimiz-
ing jerk) while avoiding collisions (using a trajectory planner).
Finally, the control module converts these fine-grained way-
points to steering and acceleration commands.

It is imperative that while the pipeline produces accurate
results, it also computes them within a specific environment-
dependent deadline (C1) in order to prevent collisions or
unnecessary emergency maneuvers that affect the comfort
of the passengers [66]. However, these two requirements are
often at odds since higher-accuracy components typically
incur an increased response time, and the optimization of this
runtime-accuracy tradeoff is further complicated by C1-C2.
In the remainder of the section, we analyze these two unique
characteristics using data collected from both our own real
AV and the sensor data released by state-of-the art vendors.

2.1 C1: Environment-dependent deadlines
Ensuring safety across the wide-range of complex scenarios
encountered in general driving requires an AV to dynami-
cally change its response time to meet the varying deadlines
demanded by the environment. To demonstrate this, we di-
vide 12 driving scenarios from a real-world dataset [3] into
2 second intervals, and plot the object detection model with
the highest accuracy (adjusted by its runtime [65]) from the
EfficientDet family [88], which provide multiple points in the
runtime-accuracy tradeoff curve. Fig. 2a shows that models
with differing runtimes and accuracies perform better at dif-
ferent times, which renders the selection of a static point on
the tradeoff curve during development inadequate.

To further support this, we develop a scenario using our real
vehicle where a replica of a pedestrian walks out in front of the
AV, and requires the AV to brake upon its detection1. In order
to check if the AV can safely stop in time, we measure the
stopping sight distance [11], which is the sum of the distance
traveled by the AV during the detector’s response time and the
distance required to come to a halt (i.e., braking distance). To

1A simulation of this scenario can be found at https://tinyurl.com/j4mhezze

0 5 10 15 20 25 30 35 40
Timeline [s]

0
200
400
600
800

1000

R
es

po
ns

e
Ti

m
e

[m
s]

Dropped Sensor Message Perception
Prediction

Figure 3. Response time variability. Baidu’s Apollo production-
grade perception and prediction suffer from response time variability.

explore the tradeoff, we choose detectors EDet6 and EDet2
from the EfficientDet family where EDet6 is accurate at the
expense of a higher response time, and EDet2 is faster but
less accurate. Hence, while EDet6 can detect the pedestrian
72m away, EDet2 can only do so at a distance of 40m.

As a result, the AV must ensure safety by dynamically
choosing between the two detectors based on its speed and
the distance to the pedestrian. Specifically, an AV driving at
7m/s requires 7.66m to stop with EDet2 and 11.14m with
EDet6, and hence must use EDet2 if the pedestrian walks out
12m away from the AV to be able to stop in time. On the other
hand, an AV driving at 17m/s requires 43.43m to stop with
EDet2, while it can only detect the pedestrian at a distance of
40m, which requires the AV to use EDet6 to stop safely.

2.2 C2: Environment-dependent runtime
Meeting constantly-evolving deadlines imposed by C1 is com-
plicated by the impact of the environment on the runtimes
of AV components. For example, the number of agents (i.e.
vehicles or pedestrians) in the scene affects the runtime of
the perception module. Quantifying this impact, Fig. 2b plots
how increasing the number of agents changes the runtimes of
several object trackers, which are critical components of the
perception module that track the trajectories of detected ob-
jects. To obtain these results, we drive an AV in the CARLA
simulator [52] while increasing the number of agents, and ob-
serve an increase in the median runtime for all object trackers.
Note that while SORT [34] provides a lower runtime, both
DeepSORT [99] and DaSiamRPN [102] offer high accuracy.

In addition, the runtime of the prediction module depends
on the velocity of the AV itself. An AV driving at a greater
speed requires a higher prediction horizon i.e. it must be
able to forecast the trajectories of other agents for longer

455

https://tinyurl.com/j4mhezze

EuroSys ’22, April 5–8, 2022, Rennes, France Ionel Gog, Sukrit Kalra, Peter Schafhalter, Joseph E. Gonzalez, and Ion Stoica

Figure 4. D3 Model structures an application as an operator graph
with a policy πDP that decides the deadline 𝒟 as per the environment
(1), and assigns a 𝒟i to each operator (2). The operators proactively
try to meet 𝒟i (3). However, if 𝒟i is missed, D3 executes reactive
measures (4), and adjusts downstream 𝒟is using a feedback loop.

into the future in order to ensure safety of the vehicle. Many
prediction approaches (e.g., MFP [89] and R2P2-MA [79])
use recurrent neural networks, which have a linear runtime
dependence on the prediction horizon as shown in Fig. 2c.

The compounding of the runtime variability of individual
components leads to a large skew between the mean and the
maximum response time of the AV pipeline, which renders
worst-case execution time analysis inefficient [25, 87]. To
demonstrate this, Fig. 3 analyzes sensor data from Baidu’s
Apollo AV [31] that drove over 108,000 miles [84, 96]. Specif-
ically, we focus on the traffic light detector [2], a key part of
the perception module, that relies on the map and the vehi-
cle’s location to choose between multiple cameras in order
to obtain bounding box proposals, which are individually
refined and classified by multiple neural networks. We find
that the response time of the traffic light detector depends on
both the choice of the camera and the number of lights in the
environment. As a result, the p99 response time latency of per-
ception is 3.3× higher than the mean, which further increases
the response time of the downstream prediction component.
Moreover, an increase in the response time keeps resources
busy, thus forcing the pipeline to drop sensor messages.

3 D3: Dynamic Deadline-Driven Execution
The execution of applications that interact with a continuously-
evolving environment (e.g. robots, AVs) requires a careful
orchestration of their components. To enable such applica-
tions to optimize their accuracy under dynamically-varying
deadlines (C1), we propose D3, an execution model that cen-
tralizes the management of deadlines. D3 models deadlines
missed due to runtime variability (C2) as exceptions, and
enables components to reactively adjust their computation.

D3 structures its application as a directed operator graph
along with a deadline policy πDP (see Fig. 4). πDP receives the
environment’s state (e.g., distance to obstacles) and computes
an end-to-end deadline 𝒟 that ensures safety and prevents
unnecessary emergency maneuvers i.e., 𝒟 bounds the wall-
clock time that can elapse between an input to the graph
and its corresponding output (Step 1). Further, πDP splits 𝒟
across operators and assigns a per-operator deadline 𝒟i which
aims to maximize the runtime-accuracy tradeoff based on the
accuracy and pre-computed runtime profiles (Step 2).

Figure 5. Timeline of execution models when C executes upon
receipt of input from A and B. Data-driven models do not enforce
deadlines and delay C’s execution until both inputs are available.
Periodic models use WCET to execute components at a fixed interval
that is unable to adjust to slacks or delays, and fails to maximize the
runtime-accuracy tradeoff. D3 achieves this by enabling components
to either adjust to a constrained deadline or wait for delayed inputs.

D3 expects operators to meet their allocated deadline 𝒟i by
using proactive strategies (e.g., running faster models under
reduced deadline allocations; Step 3 of Operator 1 in Fig. 4).
D3 models 𝒟is missed due to runtime variability (C2) as ex-
ceptions and notifies operators to undertake reactive measures
to quickly release output (e.g., quickly amending and releas-
ing previous results; Step 4). D3 also notifies the downstream
operators of the missed upstream deadline, allowing them to
either: (i) eagerly execute with incomplete inputs due to a
lack of output from the upstream operator that missed its 𝒟i,
or (ii) reason about the reduction in their available time once
the upstream operator’s reactive measures release output and
modify their computation accordingly.

D3 conveys the occurrence of the missed deadline events
to πDP using a feedback loop. Upon notification, πDP may
adjust the deadline for both downstream operators and future
executions of the application. In extreme cases where the
application is unable to perform its intended function due to
multiple missed deadlines, πDP can choose to execute a safety
backup mode that performs simple maneuvers (e.g., braking
or pulling over) to ensure a minimal risk condition [82].

3.1 Related Execution Models
We now highlight D3’s ability to maximize accuracy under
dynamic deadlines by comparing it to two key bodies of work:
data-driven execution models and periodic execution models.

Data-driven execution models employed by Service Level
Objective-based (SLO) robotics platforms (e.g., ROS [41,
77], Cyber RT [30]) trigger computation on the arrival of
input data and hence preclude the initiation of downstream
computation in the absence of inputs due to a missed upstream
deadline (C1). Moreover, such platforms execute computation
on a best-effort basis and lack mechanisms to reason about
changes in deadlines or variability in runtime [95]. As a result,
components are unable to adjust their execution to varying
deadlines leading them to miss their 𝒟i in the presence of
runtime variability (C2). For example, the lack of mechanisms
to reason about a changed deadline coupled with the runtime
variability in the second execution of A in Fig. 5 leads to a
missed deadline under a data-driven execution model. Further,
since downstream components can only trigger computation
upon receiving of the input from upstream components, the

456

D3: A Dynamic Deadline-Driven Approach for Building Autonomous Vehicles EuroSys ’22, April 5–8, 2022, Rennes, France

effects cascade and the second execution of C misses its
deadline. Conversely, D3’s πDP notifies A of the change in
deadline allowing it to proactively modify its computation to
meet the new deadline, or reactively release output quickly in
case it is missed. D3 also enables C to execute its computation
without the input from A, or wait until the input is available
and modify its computation to fit within the reduced time.

Periodic execution models, which underpin hard real-time
systems [56, 68], use conservative worst-case execution time
(WCET) estimates to execute computation at a fixed, periodic
interval. While this approach precludes a lack of input from
upstream components or a reduction in computation time
due to C2, it fails to maximize the runtime-accuracy trade-
off due to the large skew between the mean and maximum
runtime of computation in an AV pipeline (see §2.2). For
example, the WCET-driven periodic execution of C in Fig. 5
leaves plenty of slack in the average case, which could be
used to execute a higher-accuracy computation. Further, the
inflexibility of these models has led to applications adjusting
their computation to meet environment-dependent deadlines
(C1) by defining a fixed set of mode changes. However, exe-
cuting the various modes requires the components to either
transition to SLO-based execution [35, 38, 63], or undergo
a time-consuming schedulability analysis for each possible
deadline and mode transition [32, 33, 36, 78]. By contrast,
D3’s proactive strategies and reactive measures enable the
computation to forego this expensive analysis, and still adjust
itself to meet dynamic deadlines (C1). We emphasize that
D3’s execution model subsumes such coarse-grained mode
changes by allowing the deadline policy πDP to perform mode
changes on either deadline misses or specific environment
conditions (e.g., change in the vehicle speed) (see §5.2).

4 Introduction to ERDOS
This section provides an overview of ERDOS, a proof-of-
concept instantiation of D3, that builds atop prior work in
streaming systems [6, 39, 74, 101]. We first discuss the rele-
vant concepts from streaming systems (§4.1), followed by the
structure of an ERDOS application (§4.2). §4.3 exemplifies
these concepts through the implementation of a Planner.

4.1 Primer on Streaming Systems
Streaming systems (e.g. Cloud Dataflow [6], Flink [39]) struc-
ture applications as a directed graph of computational opera-
tors, which contains a set of source operators that generate the
input and a set of sink operators that consume the output. The
sources annotate the inputs with a timestamp derived from
an ordered time domain, and notify their downstream opera-
tors when they have finished sending all the input for a given
timestamp. These messages and notifications cascade along
the directed edges of the graph, with each operator potentially
transforming its input messages Mt timestamped with t and
received along an edge e before sending them along e′.

Further, the operators are notified of the receipt of all mes-
sages with time t ′ ≤ t using a watermark message Wt . A water-
mark [23, 83, 93] informs the operators of the availability of
all the inputs required for a computation across all its edges,
and thus ensures accurate computation upon synchronized
data [22]. While the computation registered with a water-
mark notification is executed sequentially according to the
the timestamp order, the computation that acts on messages is
allowed to execute out-of-order, which allows the operators
to prevent stragglers while ensuring correctness [22].

4.2 Computation Structure of an ERDOS Application
ERDOS instantiates D3 by modeling the application as a
directed graph composed of multiple subgraphs representing
the modules (e.g., perception), with each module containing
operators representing the components (e.g., lane detection)
connected by typed streams. A source of the graph reads data
from a sensor and uses an output WriteStream to inject it
into the graph, while a sink extracts data from the graph using
an input ReadStream, and sends commands to the vehicle.

Each operator must implement an interface that specifies
both the number and types of its input and output streams.
This static registration of the input and output allows the sys-
tem to ensure that the computation graph is well-formed at
compile-time, and reduces the runtime errors. Moreover, the
static registration enables the system to optimize the alloca-
tion of operators to hardware (e.g., colocate operators).

The typed streams allow communication through times-
tamped messages i.e. a stream s of type 𝒯 can carry: (i) a
DataMessage (Mt), with a payload of type 𝒯 and a times-
tamp t, and (ii) a WatermarkMessage (Wt), with a timestamp
t that represents the completion of all incoming messages for
t ′ ≤ t. Corresponding to the type of message and the input
stream, the interface implemented by each operator defines
the callbacks that are invoked by ERDOS (see §4.3).

The timestamp t generated by the source operators con-
sists of t =

(
l ∈ N, ĉ : ⟨c1, . . . ,ck⟩ ∈ Nk

)
, where l represents

a logical time (see §5.1), and ĉ conveys application-specific
information (elaborated in §5.3). This abstraction enables
applications to seamlessly work across both real-world and
simulation, by using l to represent the wall-clock time in real
AVs, and simulation time when using a simulator, the latter of
which may advance at a different rate than real-time. While
a simulator provides a consistent notion of time, ERDOS ex-
ploits the presence of a local high-speed network in real AVs
to precisely synchronize clocks in order to correctly reason
about the wall-clock time across multiple machines [54, 57].

4.3 ERDOS’ API
We now provide an overview of the API with the help
of a simplified Planner (see Lst. 1) that receives the
Obstacles and TrafficLights from perception through
DataMessages. It then computes a motion plan and returns
a set of Waypoints i.e., fine-grained points on the road that

457

EuroSys ’22, April 5–8, 2022, Rennes, France Ionel Gog, Sukrit Kalra, Peter Schafhalter, Joseph E. Gonzalez, and Ion Stoica

1 impl TwoInOneOut<Obstacles, TrafficLights, State<PlanningState>, Waypoints>:
2 fn setup(objects: ReadStream<Obstacles>, lights: ReadStream<TrafficLights>,
3 plan: WriteStream<Waypoints>, deadlines: ReadStream<Deadline>) {
4 // Call `on_watermark` even in the absence of traffic lights.
5 FrequencyDeadline::new(PlanningOp::on_watermark)
6 .with_static_deadline(30).on_stream(lights);
7 // Constrains the completion of local computation.
8 TimestampDeadline::new(PlanningOp::on_deadline)
9 .with_end_condition(// and a default start condition

10 |sent_msg_cnt: usize, watermark_status: bool| sent_msg_cnt > 0)
11 .with_dynamic_deadline(deadlines).on_stream(plan);
12 }
13 fn on_left_msg(ctx: Context, objects: Message<Obstacles>,
14 state: State<PlanningState>) {
15 // Change coordinate system of objects and add to state.
16 }
17 fn on_right_msg(..., lights: Message<TrafficLights>, ...) {...}
18 fn on_watermark(ctx: Context, state: State<PlanningState>,
19 plan: WriteStream<Waypoints>) {
20 // Computes a plan upon receiving obstacles and traffic lights.
21 }
22 fn on_deadline(ctx: Context, state: State<PlanningState>,
23 plan: WriteStream<Waypoints) {
24 // Invoked when a deadline is missed.
25 }

Listing 1. Planner computes a trajectory using the Obstacles
and TrafficLights, and specifies deadlines on its response time.

characterize the trajectory of the AV. To register its input
and output, the Planner implements the TwoInOneOut
interface where the ReadStreams are typed by Obstacles
and TrafficLights, and the WriteStream by Waypoints.

Further, to invoke the computation, the Planner imple-
ments the on_msg callbacks (lines 13-17) that convert the
coordinate system of each Obstacle and TrafficLight, a
task that can be executed out-of-order for each timestamp.
However, in order to compute a safe plan, the Planner re-
quires a synchronized and complete set of all the obstacles
and traffic lights from perception, and hence, waits for a
WatermarkMessage from both the upstream operators signi-
fying the receipt of all incoming messages for each timestamp.
It then uses the converted obstacles and lights to compute the
Waypoints for the AV in on_watermark (line 18).

Moreover, the Planner must complete its computation
within a deadline, and thus restricts its runtime from the time
of the receipt of the input to a dynamically-varying dead-
line retrieved from the deadline_stream provided by the
deadline policy πDP (line 11). §5.1 and §5.2 further elaborate
on the specification and dynamic-variation of deadlines. ER-
DOS automatically exposes the deadline for the timestamp
computed by πDP to each of the callbacks via the Context,
allowing the operators to employ proactive strategies to meet
deadlines and vary their computation accordingly (see §5.3).

However, to meet its deadline in the presence of a delay
of more than 30ms in the receipt of the TrafficLights, the
Planner chooses to eagerly initiate the computation with
partial input, and computes the plan using just the obstacles
(line 6). Finally, the deadline specification also requires an
exception handler that invokes reactive measures to quickly
releases output upon a missed deadline (on_deadline). The
handler receives a Context containing information useful to
mitigate the deadline miss (e.g., timestamp, deadline) along
with the state of the operator, and can be used to output the
previous computed plan offset from the AV’s current location.

5 Achieving Dynamic End-to-End Deadlines
We now discuss ERDOS’ core contributions that enable it to
address the following challenges posed by D3’s realization:
∙ ERDOS must initiate computation upon the availability
of all required input, and allow components to bound their
response time from that event. In addition, components must
be allowed to initiate computation in the presence of partial
input if upstream components miss their deadline 𝒟i (§5.1).
∙ ERDOS must allow the deadline policy πDP to meet strict
safety, adaptivity and modularity constraints, owing to its
critical effects on the latency-sensitive computation (§5.2).
∙ ERDOS must provide efficient mechanisms to enable com-
ponents to utilize different strategies to proactively output
the highest-accuracy results possible within 𝒟i (§5.3).
∙ In case of a missed 𝒟i, ERDOS must enable execution
of reactive measures that quickly release output, and allow
downstream computation to begin. (§5.4).

5.1 Deadline Specification
In an effort to meet both its individual deadline 𝒟i, and the
end-to-end deadline 𝒟, each component of a D3 application
must be able to: (i) bound the execution time from the re-
ceipt of the inputs and the generation of the corresponding
output (C1), and (ii) bound the time between the invocation
of the computation on inputs of successive timestamps in the
presence of runtime variability in upstream components (C2).
While (i) ensures that a component adheres to its allocated
deadline 𝒟i for time t, (ii) allows components to eagerly initi-
ate their computation on incomplete input for time t ′ > t to
ensure that the end-to-end deadline 𝒟 is met for time t ′ in
case the upstream components miss their 𝒟i for t ′.

To achieve these goals, ERDOS must track the initiation
and completion of computation for every time t. ERDOS
accomplishes this by automatically capturing fine-grained
execution events from the components at the granularity of
the logical time l. Specifically, for each logical time l of the
timestamp t, ERDOS maintains counters of the number of
incoming and outgoing messages annotated with t (Mt), and
boolean variables indicating the receipt and generation of the
watermark for t (Wt) across all the input streams for each
component. This allows ERDOS to automatically initiate
computation once all required inputs are available (denoted
by the receipt of a Wt across all the input streams) (i), and
register the completion of the computation for the logical time
l once the watermark Wt for t is sent on the output streams.

In order to enable flexibility in the events that are con-
strained by a deadline, ERDOS exposes these events to the
components, and allows them to specify relative deadlines,
which limit the amount of wall-clock time that can elapse
between any two events. Specifically, components can reg-
ister two boolean functions: deadline start condition (DSC)
and deadline end condition (DEC), which return True to sig-
nify the initiation and completion of the computation for a

458

D3: A Dynamic Deadline-Driven Approach for Building Autonomous Vehicles EuroSys ’22, April 5–8, 2022, Rennes, France

Figure 6. Environment-dependent deadlines. ERDOS evaluates
DSC for every message (1). If satisfied, it initiates an absolute dead-
line according to πDP (2). Similarly, ERDOS evaluates DEC upon
generation of messages, and removes any satisfied deadlines (3). If
a deadline is missed, ERDOS invokes an exception handler (4).

logical time l respectively. DSC and DEC are evaluated at the
receipt and generation of every message, and receive a tuple(
n ∈ N,w ∈ {True,False}

)
, where n denotes the number of

messages received or sent for that logical time, and w depicts
the receipt or generation of the watermark. ERDOS maps the
relative deadline 𝒟i to an absolute deadline by automatically
capturing the wall-clock time at which DSC is satisfied (Step
1 in Fig. 6), and offsetting it by 𝒟i (Step 2 in Fig. 6). ERDOS
then tracks the passage of wall-clock time and ensures that
DEC is satisfied before the absolute deadline (Step 3 in Fig. 6).

Further, to simplify the specification of the relative deadline
𝒟i for the enforcement of the response time deadlines (i) and
(ii), ERDOS provides the following two general deadline
abstractions that constrain a default set of events:
Timestamp deadlines (lines 7-11 in Lst. 1) bound the exe-
cution time. Components define a relative deadline 𝒟i that
constrains the wall-clock time elapsed between a default DSC
that specifies the receipt of the first message timestamped
with t (Mt), and a default DEC that specifies the output of the
first watermark timestamped with t ′ ≥ t (Wt ′). If DEC is not
satisfied before 𝒟i expires, ERDOS invokes the exception
handler (on_deadline on line 22 in Lst. 1), which quickly
releases output to initiate downstream computation (see §5.4).
Frequency deadlines (lines 4-6 in Lst. 1) allow a precise
invocation of the computation in the presence of runtime vari-
ability. To achieve this, components define a relative deadline
𝒟i that constrains the maximum wall-clock time that may
elapse between a default DSC that specifies the receipt of the
watermark timestamped with t (Wt), and a default DEC that
specifies the receipt of the first watermark for t ′ > t (Wt ′). If
DEC is not satisfied for t ′ before 𝒟i expires, ERDOS automat-
ically inserts Wt ′ on the given input stream to simulate the
arrival of all incoming data for t ′, and invokes the computa-
tion with the partial input (see §5.3). For example, if Wt ′ does
not arrive on the lights stream within 30ms of the receipt
of Wt (as specified on line 6 in Lst. 1), ERDOS automatically
inserts Wt ′ and invokes on_watermark with partial input.

We emphasize that the ability to tailor the above general
abstractions using the fine-grained execution events exposed
by ERDOS, enables components to specify the full spectrum
of deadline constraints discussed in prior work [47]. To ex-
emplify this ability, the Planner in Lst. 1 uses this control

to tailor the TimestampDeadline constraint with a custom
DEC (lines 9-10 in Lst. 1) that is satisfied as soon as the first
message for a timestamp t is output. Coupled with the de-
fault DSC, this constraint allows the Planner to bound the
time between the receipt and generation of the first message
timestamped with t (Mt). This deadline can be used by the
Planner to quickly release a coarse-grained plan before re-
fining it, thus enabling downstream computation to begin.

5.2 Environment-Dependent Deadlines
Components may use the abstractions discussed in §5.1 to
specify static deadlines that do not evolve over time by using
static values for 𝒟i (e.g., 30ms for the FrequencyDeadline
on line 6 in Lst. 1). However, D3 requires that these abstrac-
tions support dynamic deadlines determined by a deadline
policy πDP, which evolve according to the environment (C1).

We emphasize that the centralization of πDP, which dynami-
cally determines the end-to-end deadline 𝒟 and the individual
deadline 𝒟i for each component, is a novel contribution of
the D3 execution model. While the development of such a
policy raises interesting research challenges orthogonal to
this work, this section concerns itself with the following key
systems challenges that its placement on the critical path of
the computation presents to the design of ERDOS:
Safety. The presence of πDP on the critical path of affecting
what computation runs in each component requires it to meet
strict deadline constraints. In addition to being able to initiate
a safety backup mode that performs simple maneuvers if
multiple component deadlines are missed (see §3), πDP must
also ensure safety by executing the backup mode if it misses
its own deadline (due to delayed inputs or runtime variability).
Adaptivity. In order to reduce πDP’s effect on the latency of
the critical path, ERDOS must allow applications to adapt the
frequency at which the deadline allocations are recomputed
according to the dynamicity of the environment. For example,
a πDP may change the allocations less frequently on highways
than in cities, owing to the infrequent change in environment.
Modularity. Individual modules (e.g., perception) may ex-
ploit expert knowledge to specify policies that split deadlines
across their components (e.g., detection, tracking) more effi-
ciently than a centralized policy. Thus, ERDOS must enable
the decomposition of monolithic policies such that high-level
policies provide coarser-grained deadlines to module-specific
policies, which further split them across their components.

To achieve these goals, ERDOS executes πDP as a subgraph
of operators which receive information about the environment
from components on its input streams. πDP processes this
information to compute an end-to-end deadline 𝒟 and decom-
poses into individual deadlines 𝒟i, which are sent to compo-
nents via its output streams. Specifically, lines 8-11 in Lst. 1
show how an operator can adjust its TimestampDeadline
according to πDP by registering on the deadlines stream
provided by ERDOS. πDP utilizes the state of the environ-
ment to dynamically compute the relative deadline 𝒟i for

459

EuroSys ’22, April 5–8, 2022, Rennes, France Ionel Gog, Sukrit Kalra, Peter Schafhalter, Joseph E. Gonzalez, and Ion Stoica

each logical time l, and communicates it to the operator using
the deadlines stream. ERDOS automatically synchronizes
the computation for l with the corresponding 𝒟i provided by
πDP, and utilizes it to compute the absolute deadlines for the
computation (see Fig. 6). To enable components to adjust their
computation to meet the changing deadlines (§5.3), ERDOS
exposes the absolute deadlines via the Context (§4.3).

Executing πDP as a subgraph enables the policy to exploit
ERDOS’ graph abstraction to achieve modularity by split-
ting itself across operators, and benefit from co-location with
components that share the state of the environment with them
(see §5.4). Moreover, πDP can use ERDOS’ timestamping
mechanism to achieve adaptivity. Specifically, a πDP can send
a 𝒟i in a message Mt followed by a watermark Wt ′ , where
t ′ ≥ t, and adaptively evolve the delta between t ′ and t ac-
cording to the environment. Wt ′ signifies the completion of all
outputs from πDP until timestamp t ′, and specifies the relative
deadline 𝒟i for the next timestamps from t to t ′. Further, πDP
can ensure safety by using ERDOS’ static deadlines (§5.1)
to enforce strict constraints on its execution, and invoke the
safety backup mode in case it misses a deadline (see §5.4).

5.3 Meeting Deadlines
ERDOS exposes the deadline 𝒟i (allocated by πDP) to the
operators via the Context (lines 13, 18 in Lst. 1). We now
discuss some general proactive strategies that operators may
use to meet 𝒟i (by satisfying DEC before it expires) below:
Executing anytime algorithms [60, 98, 100] that maximize
the accuracy for a given 𝒟i through iterative refinement [103],
and provide a continuous runtime-accuracy tradeoff curve
by monotonically increasing accuracy with increasing dead-
lines. Such algorithms can be interrupted when 𝒟i expires
and ensure the highest-accuracy results possible within the
time. Moreover, components can choose to release lower-
accuracy results (before 𝒟i expires) to downstream operators,
allowing them to begin computation early and iteratively re-
fine their results. For example, the Planner in Lst. 1 could
execute an anytime planning algorithm [60, 98, 100] in its
on_watermark method. The algorithm would release coarse-
grained waypoints and iteratively refine them, to allow the
downstream control operator to begin generating commands.
Changing the implementation based on the most accurate
algorithm that typically completes within 𝒟i (e.g., mean or
p99 runtime is less than 𝒟i). This is facilitated by the exis-
tence of multiple algorithms for the components, that enable
a tradeoff between runtime and accuracy [59, 88] (see §2).
Executing multiple versions of components to ensure that
at least one completes before 𝒟i expires (similar to [86]).
In addition to choosing the highest-accuracy algorithm that
fits within 𝒟i, components can execute faster algorithms that
are guaranteed to finish execution before 𝒟i expires, thus
maximizing the runtime-accuracy tradeoff, while still meeting
deadlines in the presence of runtime variability (C1). For
example, a detector can run two callbacks in parallel: (i)

the most-accurate model that typically completes within 𝒟i,
and (ii) a fast, low-accuracy model, and return results from
(ii) if (i) does not meet 𝒟i. Similar to anytime algorithms,
components must be allowed to release the lower-accuracy
results to unblock downstream operators, or wait until 𝒟i
expires, and return the highest accuracy results available.
Skipping the execution of an algorithm in case of small 𝒟i.
Unlike load shedding [40, 90, 91] that does not generate
results, AV components can quickly release reduced-accuracy
results to unblock downstream computation by amending
prior results. For example, the Planner in Lst. 1 can release
its last computed plan offset to the current location of the AV.
Eagerly executing with partial input if upstream operators
cannot meet their 𝒟i due to runtime variability (C2). While
previous strategies require the input to be available and must
adjust the computation to a reduced deadline in case of up-
stream runtime variability (C2), this strategy allows compo-
nents to eschew input from certain upstream components in
order to maintain its initially allocated 𝒟i. For example, the
Planner in Lst. 1 eagerly executes without TrafficLights,
and plans a trajectory using Obstacles if the upstream com-
ponent experiences a runtime variability of more than 30ms.

ERDOS achieves an effortless and efficient realization of
these strategies using two novel mechanisms detailed below:
Intermediate Results. ERDOS’ extension of timestamps pro-
vides first-class support for anytime algorithms, speculative
execution of multiple versions, and enables eager execution
with partial input. Specifically, anytime algorithms and dif-
ferent versions can annotate outputs with t =

(
l, ĉ

)
, and in-

crease the value of ĉ to notify downstream computation of
the accuracy of the results as they become available (with
an increased value of ĉ signifying increased accuracy of the
results). ERDOS orders the execution of computation using ĉ
and automatically prioritizes computation on higher-accuracy
inputs, thus maximizing the accuracy of results. Similarly,
upon expiration of a FrequencyDeadline, ERDOS auto-
matically inserts a Wt (with a low value of ĉ) on the stream
that failed to generate the required input within the deadline.
The computation then conveys the accuracy of these results
to its downstream components, and refines its results when
missing inputs from upstream components become available.

For example, in the absence of TrafficLights or when
using anytime algorithms, the Planner can output a coarse-
grained plan and annotate its accuracy using t1 =

(
l, ĉ1

)
. This

allows the downstream control operator to generate com-
mands using the coarse-grained plan, and refine them after
a fine-grained plan is available. If multiple plans are avail-
able, ERDOS automatically eschews the control operator’s
execution with a coarse-grain plan tagged with t1 in favor of
a fine-grained plan tagged with t2 =

(
l, ĉ2

)
, where ĉ2 > ĉ1.

Speculative Execution. ERDOS automatically chooses to
change the implementation, execute multiple versions or skip
the execution based on 𝒟i. To achieve this, it requires com-
ponents to decouple their state from the implementation of

460

D3: A Dynamic Deadline-Driven Approach for Building Autonomous Vehicles EuroSys ’22, April 5–8, 2022, Rennes, France

the computation, and specify multiple implementations along
with their runtime profiles. Specifically, a component must
register its state (e.g., PlanningState on line 1 in Lst. 1)
with ERDOS. By assuming control of the state, ERDOS’ spec-
ulative execution mechanism achieves an efficient execution
of different implementations for successive timestamps by au-
tomatically providing access to the state to different callbacks
(lines 14, 18, 22 in Lst. 1). Further, the mechanism enables
the parallel execution of multiple versions by providing each
implementation with a view of the state without requiring
operators to synchronize updates to the state (see §5.4).

5.4 Handling Deadline Misses
If the strategies discussed in §5.3 fail to meet the allocated
deadline 𝒟i, D3 requires components to undertake reactive
measures, whose execution presents the following challenges:
Fast Invocation of the measures upon expiration of 𝒟i so as
to quickly unblock downstream computation and minimize
the reduction of available time for downstream operators.
Access to the state of the partially-executed proactive strate-
gies to enable the measures to quickly release results, and
ensure its correctness for executions of future timestamps.
Parallel execution of the measures and the proactive strate-
gies to enable components to quickly unblock downstream
computation with lower-accuracy results while using higher-
accuracy computation for state updates. For example, if the
Planner misses 𝒟i while running a higher-accuracy algo-
rithm, it can release the last computed plan offset to the cur-
rent location of the AV as its reactive measure, while updating
its state with the higher-accuracy plan for future executions.

To address these challenges, ERDOS enables components
to accompany the specification of timestamp deadlines (from
§5.1) with deadline exception handlers (DEH) (lines 22-25),
which execute the reactive measures if 𝒟i is not met. ERDOS
orchestrates the execution of the specified DEH alongside the
proactive strategies through the following execution policies:
Abort. Terminates the execution of the proactive strategy for
time t, and requires DEH to notify the computation’s comple-
tion by sending a watermark Wt and ensure the correctness of
state for t. To achieve this, DEH receives a view of the state
for t ′ < t along with the dirty state for t (i.e., mutations made
to the state by the partially-executed proactive strategy for t).
DEH uses these views to quickly release output and amend
the dirty state to ensure its correctness. For example, a DEH
in a Planner could either use the dirty state at t to output
and save the best plan found by the deadline if the operator is
anytime, or amend the plan computed for t ′ otherwise.
Continue. Executes the proactive strategy for t in parallel
with the DEH . The latter unblocks downstream computation
by releasing output for t (Mt), while the former notifies the
computation’s completion (Wt) and ensures state consistency.
To achieve this, DEH receives a view of the state for t ′ < t,
and executes a fast algorithm to quickly release output. In
parallel, the proactive strategy continues releasing output

Deadline

Callback1

2

Handler

Callback
Handler

commit(state, t)
Abort

Continue

����

��

Figure 7. Handling missed deadlines. When a deadline is missed,
handlers are invoked to mitigate the consequences. Callbacks which
miss their deadline may Abort to let the handler rapidly update
operator state, or Continue to ensure more accurate state updates.

for t, thus providing the downstream computation a choice
of more accurate results. Moreover, allowing the proactive
strategy to save the state for t enables the computation for
t ′′ > t to use the high-accuracy results, and prevents a cascade
of low-accuracy results across time. For example, a DEH in
a Planner can amend the plan computed for t ′, while the
proactive strategy releases and saves a more-accurate plan.

A seamless execution of DEH under the Abort and Continue
policies requires a careful management of the component’s
state in order to ensure its consistency. To aid the components
in this endeavor, ERDOS provides system-managed state.
Specifically, ERDOS assumes control over the state of the
components decoupled from their implementation (see Spec-
ulative Execution in §5.3), and enables the state to meet the
challenges of executing DEH discussed earlier by ensuring
the following two key properties over it:
Transactional Semantics. In order to ensure a fast invoca-
tion and parallel execution of πDP, DEH and multiple versions
of the computation, ERDOS must provide them with a view
of the state and ensure that it is saved from either the DEH
or the proactive strategy according to the execution policy.
ERDOS achieves this by enforcing transactional semantics on
the state at the granularity of a timestamp, and provides the
proactive strategy with a view of the last committed state, and
automatically commits any mutations made by them upon the
successful release of the watermark for the currently execut-
ing timestamp. In case of a missed 𝒟i, ERDOS invokes DEH
and shares the dirty state along with a view of the last com-
mitted state, and automatically commits the changes made to
the dirty state by DEH upon its completion.
Time-Versioning. To further ensure the execution of πDP,
DEH and proactive strategies across multiple timestamps, ER-
DOS maintains a version of the state for each timestamp
t. For example, multiple executions of the Planner for dif-
ferent timestamps (each corresponding to a different set of
Obstacles and TrafficLights) can be executed in paral-
lel with their computed plans being saved in different versions.
In case a deadline is missed for t, the DEH gets access to the
committed state for all timestamps t ′ < t and can send Mt to
unblock downstream computation. Meanwhile, the proactive
strategies can continue in parallel for timestamps t ′′ ≥ t and
commit state mutations by releasing Wt ′′ .

Moreover, while ERDOS provides a default State
implementation with the properties discussed above, it
allows components to provide their own states. These states

461

EuroSys ’22, April 5–8, 2022, Rennes, France Ionel Gog, Sukrit Kalra, Peter Schafhalter, Joseph E. Gonzalez, and Ion Stoica

implement an interface that customizes both transactional
semantics (through commit) and time-versioning (through
get_committed to retrieve a view of the state at t), and
may use techniques such as CRDTs [81]. For example, the
Planner could implement the interface for PlanningState,
instead of using the State provided by ERDOS (as shown in
line 1 of Lst. 1). In such a case, the PlanningState could
maintain a vector of waypoints for timestamp t = 0, and log
additions of future waypoints in commit, instead of saving
the entire set of waypoints for each timestamp t ′ > t.

6 ERDOS’ Implementation
ERDOS is an open-source distributed system implemented
in ∼ 13k lines of Rust, whose type safety and memory se-
mantics are essential for safety-critical applications. Further,
to interact with ML frameworks [18] and enable prototyping
with simulators [52], ERDOS provides a Python interface.

ERDOS’ distributed nature is enabled by a leader-worker
architecture where the leader manages a set of worker pro-
cesses running across several machines. The leader partitions
the operator graph and schedules operators to workers, which
are responsible for exchanging data along streams (§6.1), ex-
ecuting callbacks (§6.2), managing deadlines and executing
their exception handlers (§6.3). We choose the leader-worker
architecture due to its implementation simplicity, and ensure
its scalability by keeping the leader off the critical path.

6.1 Communication
ERDOS initializes itself by constructing a control plane be-
tween the leader and the workers, which is used by the leader
to schedule operators to workers and synchronize their initial-
ization, thus ensuring that all operators are ready to execute
before transmitting any messages. The workers construct a
data plane amongst themselves atop TCP sessions, which is
used to communicate the messages sent between the opera-
tors. This allows ERDOS to keep the leader off the critical
path, while still enabling centralized scheduling decisions.

ERDOS provides a rapid communication of messages by
choosing the underlying communication channel based on
whether it connects operators: (i) on the same worker, or (ii)
on different workers. While the communication for (ii) is
multiplexed atop the data plane among the workers, operators
on the same worker store data on the heap and communicate
a reference to it over Rust’s inter-thread channels, enabling
rapid delivery of large messages and safe zero-copy commu-
nication using Rust’s compile-time mutability checks.

6.2 Operator Execution
Workers execute computation by maintaining an execution
lattice, a dependency graph of callbacks which guarantees the
processing of message and watermark callbacks in timestamp
order, thus providing lock-free access to state. Upon receiv-
ing a message, a worker retrieves a view of the state using

get_committed (§5.4), and inserts into the lattice a bound
callback, consisting of the state, the Context, the callback,
and the received message. Similarly, upon the receipt of a
watermark, the worker verifies if it acts as a low watermark
across the operator’s input streams, and inserts a callback that
commits the state upon completion by invoking commit.

This execution lattice serves as a run queue for a worker’s
multi-threaded runtime. A set of threads retrieve and execute
the callbacks, and notify the lattice upon their completion
to unlock further dependencies (e.g., callbacks with higher
timestamps). ERDOS allows operators to override the order-
ing semantics of the lattice to fine-tune the parallelism and
state-management. For example, an operator may manually
synchronize updates to its state, and ask ERDOS to execute
all its callbacks in parallel by specifying that all timestamps
are equivalent, and thus ready to execute concurrently.

6.3 Deadline Management
The worker also ensures that the deadlines are initialized, and
execute the exception handlers in case they are missed. To
initialize a deadline, workers maintain per-stream statistics
on the receipt of messages and the watermark status for each
time t. Upon receipt of a message (Mt) or watermark (Wt),
the worker updates the statistics, and invokes DSC. If satisfied,
the worker synchronizes the relative deadline 𝒟i for t sent by
the deadline_stream (line 3 in Lst. 1), and computes the
absolute wall-clock time at which it expires. The deadlines,
along with their handlers (DEH), are maintained by the worker
in a priority queue ordered by the absolute deadline.

A deadline is removed from the queue when the opera-
tor satisfies DEC or misses the deadline. Workers maintain
per-stream statistics of the transmission of messages and wa-
termarks, and remove the deadline and the DEH from the
queue upon satisfaction of DEC. Further, workers poll the
queue, and invoke the DEH according to either the abort [37]
or continue policy upon the expiration of a deadline.

7 Evaluation
Open-source AV pipelines (e.g., Autoware [28], Apollo [29])
do not include models and lack feature-complete integration
with realistic open-source simulators, which are required to
measure the efficacy of D3. Thus, we developed Pylot, a state-
of-the-art AV that achieves a competitive score on the map
track of a simulated AV challenge and drives real AVs. We
use Pylot to evaluate D3 and ERDOS, and seek to answer:
1. How does ERDOS compare with other systems? (§7.2)
2. Does ERDOS enable the fulfillment of deadlines? (§7.3)
3. Do D3’s dynamic deadlines improve safety? (§7.4)

Experimental Setup. We perform all our experiments on a
machine having 2× Xeon Gold 6226 CPUs, 128GB of RAM,
and 2× Titan-RTX GPUs, running Linux Kernel 5.3.0. This
configuration closely reflects the hardware used in our AVs.

462

D3: A Dynamic Deadline-Driven Approach for Building Autonomous Vehicles EuroSys ’22, April 5–8, 2022, Rennes, France

0.00 0.25 0.50

10 KB

100 KB

1 MB

10 MB

M
es

sa
ge

si
ze

Intra-Worker

0 5 10

Callback invocation delay [ms]

Inter-Worker

ROS
ROS2
Flink
ERDOS

(a) Message Delay

0 5 10

2

3

4

5

N
um

.R
ec

ei
ve

rs

Intra-Worker

0 30 60

Callback invocation delay [ms]

Inter-Worker

(b) Operator Fanout Delay

0 10 20

4 Cameras
2 LiDAR

6 Cameras
3 LiDAR

8 Cameras
4 LiDAR

10 Cameras
5 LiDAR

Intra-Worker

0 20 40

End-to-end response time [ms]

Inter-Worker

(c) Sensor Scaling

Figure 8. Messaging Performance. We evaluate the response time for (a) varying message sizes, (b) operator fanout, and (c) pipeline sizes
for intra-worker and inter-worker communication. In all cases, we find that ERDOS’ optimized implementation results in better performance.

7.1 Pylot: an AV Development Platform
The construction of Pylot was a multi-year effort leading to
approximately 28k lines of code, with an additional 434 lines
required to port it to a real AV2. Pylot contains dozens of
components and is, to the best of our knowledge, the most
comprehensive open-source AV pipeline with trained models.
We now briefly describe a few components relevant to our
evaluation (see [55] for an extended discussion).

Pylot’s perception module comprises of components that
perceive objects, lanes, and traffic lights using multiple cam-
eras. While Pylot provides several implementations for each
component (suited for different driving environments), our
experiments use EDet2 to EDet6 from the EfficientDet fam-
ily [88] in the order of increasing accuracy and runtime. This
enables us to experimentally evaluate the runtime-accuracy
tradeoff as accuracy varies from 39.6 mAP (EDet2) to 51.7
mAP (EDet6), and the runtime varies from 20ms to 262ms.

The Pylot planning component contains implementations
of Hybrid A* [51], RRT* [60] and FOT [98, 100] that per-
form best under different driving scenarios [62, 64, 76]. Since
we execute our experiments in an urban environment, we uti-
lize the FOT planner that discretizes the configuration space,
and is fast if coarse discretizations are chosen, with poor
discretizations producing infeasible plans. We create config-
urations of the planner by varying the space discretization
from 0.3m to 0.7m, and evaluate them in Fig. 2d, which plots
the lateral jerk while performing a swerving maneuver. We
observe that configurations with longer deadlines, and lower
space and time discretization provide increased comfort.
Methodology. The tight coupling between the existing open-
source AV pipelines and their underlying systems (e.g., Auto-
ware and ROS [77], Apollo and CyberRT [30]) makes porting
these pipelines to ERDOS a time-consuming engineering ef-
fort. Similarly, migrating Pylot to the underlying systems used
by these pipelines is a challenging undertaking. As a result,
our evaluation follows a two-pronged approach. First, we
measure low-level system metrics (e.g. callback invocation
delay) to show a lack of regression in ERDOS’ realization
of D3 as compared to the other systems (§7.2). Second, we
extend the CARLA challenge [13] to construct a challeng-
ing benchmark for AV systems spanning 50km of simulated
2A demo of one of our test drives: https://tinyurl.com/yaumb4sn

driving. We port the execution models used by the underlying
systems to ERDOS and use the benchmark to highlight the ef-
ficacy of D3 when compared to these models (apart from any
engineering benefits that come from ERDOS) (§7.3, §7.4).

7.2 ERDOS’ Performance vs. Other Systems
We evaluate the latency of ERDOS with respect to message
size, operator fanout, and pipeline complexity. We compare
against (i) ROS, a widely used platform for AVs [20, 28, 53,
95], (ii) ROS2, which provides more real-time guarantees [50,
71], and (iii) Flink [39] a data-driven streaming system that
is closest to ERDOS due to its operator-centric programming
model and usage of watermarks for unlocking computation.
Microbenchmarks. We measure the delay incurred by send-
ing messages of increasing sizes between two operators and
invoking a callback upon receipt of the message. By measur-
ing the callback invocation delay, we compare how different
systems contribute to AV pipeline’s response time via the
implementation of the communication stack and the schedul-
ing of callbacks. We send messages at 30Hz, the frequency
at which AVs process data [1]. Fig. 8a shows the results
across both intra-worker and inter-worker placements of the
operators. ERDOS’ intra-worker callback invocation delay
remains constant across message sizes due to its zero-copy
communication. Further, ERDOS’ inter-worker implementa-
tion performs 2.0× better than ROS, and 3.2× better than
ROS2, and 2.5× better than Flink when sending 1MB mes-
sages. We analyze the systems to attribute the overhead, and
find that Flink and ROS have additional data copies and a
more inefficient networking path accounting for 80% of the
overhead, and slower serialization/deserialization responsi-
ble for 20% of the overhead. Moreover, we attribute ROS2’s
overhead to its use of the Data Distribution Service, which
incurs additional costs for data conversion [71].

Next, we compare ERDOS’ callback invocation delay to
other systems’ when broadcasting the output of an operator
(e.g., camera image) to multiple operators (e.g., perception
components), which is a common pattern in AVs. Fig. 8b
shows that ERDOS sends a typical camera image message of
6MB to 5 operators in the same worker at a median latency
of 0.12ms, 150× faster than ROS2 and 30× faster than Flink.
When communicating across workers, ERDOS broadcasts

463

https://tinyurl.com/yaumb4sn

EuroSys ’22, April 5–8, 2022, Rennes, France Ionel Gog, Sukrit Kalra, Peter Schafhalter, Joseph E. Gonzalez, and Ion Stoica

0 5 10 15
0

50
100
150
200
250

Deadline Detection

0 5 10 15

Deadline Planning

R
es

po
ns

e
tim

e
[m

s]

Time[s]

Figure 9. Meeting Deadlines. We vary the deadline every second
and show how the modules respond to the new deadlines. Both the
detection and planning modules adapt to meet the deadline and the
more adaptive planning module is better at using its time allotment.

to 5 operators at a median delay of 9.76ms, which is 1.7×,
4.2×, and 4.4× faster than ROS, ROS2, and Flink.
Response Time Benchmarks on Synthetic Pipelines. In or-
der to measure the scalability to complex AV pipelines [7,
9, 95], we emulate Pylot with an increasing number of sen-
sors sending data at 30Hz. We first instrument Pylot, and
retrieve the mean size of each message type. Based on these
measurements, we emulate a pipeline with an increasing num-
ber of sensors and operators, which sends messages totalling
925MB/s when processing 10 cameras and 5 LiDARs across
75 operators. Moreover, for a worst-case estimate of system
overheads, we assume each operator has a 0ms runtime.

Fig. 8c compares the end-to-end response time of the
pipeline when executed within a worker and across work-
ers. We find that for 10 cameras and 5 LiDARs, ERDOS’
intra-worker implementation exhibits a median response time
of 2.5ms, which is 12× and 1.7× better than ROS2 and Flink.
When placing each operator in its own worker, ERDOS ex-
hibits a median response time of 3.4ms, which is 2.0×, 9.3×,
and 5.0× faster than ROS, ROS2, and Flink. Note that a
realistic deployment of Pylot would colocate operators in
workers, and thus the worst-case latency would be similar to
that observed in the intra-worker graph.

Takeaway: ERDOS’ efficient implementation scales to
large pipelines and enables AVs to meet more deadlines by
minimizing the amount of time lost to system overheads when
invoking computation due to message arrivals.

7.3 Efficacy of ERDOS’ Deadline Mechanisms
We evaluate the latency overhead introduced by the mech-
anism for implementing πDP policies, the ability of compo-
nents to proactively meet dynamic deadlines, and the effect
of reactive measures in meeting end-to-end deadlines.
Latency Added by the Policy Mechanism. To achieve dy-
namic deadlines, applications define πDP, which computes
deadlines using pipeline data and sends deadlines to compo-
nents (§5.2). In order to isolate the latency of the mechanism
from the latency of the πDP logic, we use a no-operation πDP
that receives data from Pylot’s components and sends static
deadlines to the components. We measure Pylot’s response
time without and with the no-operation πDP during a 35km

ERDOS ROS
0.0

0.2

0.4

In
vo

ca
tio

n
de

la
y

[m
s]

Figure 10. Impact of Deadline Exception Handlers. ERDOS
supports fast invocation of handlers (left), and enables Pylot to
quickly react to deadline misses (right), ensuring timely responses.

drive, and we find that the policy mechanism increases the re-
sponse time by less than 1%. The median and 90th percentile
response times increase by 0.9ms and 2.3ms respectively.
Meeting Deadlines. We evaluate ERDOS’ support for fine-
grained changes in deadline allocations (§5.3) and if Pylot’s
components adapt to meet these changes. In the experiment,
we use a policy that randomly changes deadline allocations
every second. Fig. 9 shows the response time of Pylot’s detec-
tion and planning during a short drive. We observe that while
detection meets its deadline, it fails to utilize its entire time al-
location. This is because the EfficientDet [88] family provides
8 models with different runtimes, and ERDOS chooses the
model with the highest runtime that fits within the allocated
deadline, which may be significantly higher. By contrast, the
planning component fully utilizes its time allocation because
it executes an anytime algorithm [98, 100].
Handling Deadline Misses. Deadline exception handlers
(DEH) ensure that a missed deadline does not delay down-
stream components (§5.4). In this experiment, we compare
against a DEH implementation based on ROS’ actionlib, a
preemptible task library. Fig. 10 (left) shows that ERDOS in-
vokes DEH 0.1ms after a deadline is missed, and it is 5× faster
than ROS. This delay is acceptable for Pylot, as Fig. 10 (right)
shows the per-component and end-to-end response time with-
out DEH (i.e., the data-driven execution model described in
§3.1) and with DEH during a 50km drive in simulation. Py-
lot without DEH has a 0.6% end-to-end deadline miss ratio,
whereas with DEH it always meets the end-to-end deadline.

Takeaway: ERDOS implements D3 by swiftly executing
πDP, enabling proactive strategies to meet deadlines, and
rapidly taking reactive measures when deadlines are missed.

7.4 Efficacy of the D3 Execution Model
We evaluate the efficacy of D3 by exploring a deadline allo-
cation policy that adjusts the end-to-end deadline to avoid
collisions in challenging scenarios. The focus of our work
is not the design of policies, but to provide the mechanisms
to implement such policies. Therefore, we present a baseline
policy that adapts deadlines as a function of the AV speed
and the trajectories of other agents. Our policy computes re-
action time, defined as the sum of time to receive 8 sensor
readings, which are sufficient to build a trajectory prediction
for the agents, and the end-to-end runtime of the current con-
figuration. The policy uses the reaction time and the AV’s

464

D3: A Dynamic Deadline-Driven Approach for Building Autonomous Vehicles EuroSys ’22, April 5–8, 2022, Rennes, France

Periodic Data-Driven D3 (Static Deadlines) D3
0

40

80
N

um
be

ro
f

co
lli

si
on

s

78 36
2.2x

34
2.3x

25
3.1x

Figure 11. D3 Reduces Collisions. In a challenging 50km drive,
ERDOS’ realization of D3’s dynamic deadlines reduces collisions
by 68% over solutions using the periodic execution model.

0 100 200 300 400
Response time [ms]

0.00

0.01

0.02

R
el

at
iv

e
Fr

eq
ue

nc
y

D3 (Static Deadlines)
D3

Figure 12. Response Time Histogram. D3 (Static Deadlines) en-
forces the static deadlines that perform the best during the drive
and the variability is due to C2. By contrast, the D3 with dynamic
deadlines offers faster responses when needed, and executes more
accurate computation otherwise.

driving speed to estimate the AV’s stopping distance. It then
adjusts the end-to-end deadline depending on how close to
other agents the AV will be at the end of its stopping distance.

We compare the performance of Pylot under the dynamic
deadlines computed by this deadline allocation policy to five
static deadlines ranging from 125ms to 500ms.

7.4.1 Aggregate Study. We explore if our policy adjusts
the deadlines to avoid collisions during a challenging 50km
CARLA Challenge drive [13]. In this experiment, we adapt
the detector in response to shorter deadlines, but keep all the
other components fixed in order to limit the experiment dura-
tion (exploring all tradeoffs required 100 days of simulation).

Fig. 11 highlights the efficacy of D3 apart from the en-
gineering of ERDOS by running Pylot atop ERDOS using
four execution models: (i) a periodic execution derived from
WCET estimates (similar to Apollo [1] and Autoware [28],
which execute most components periodically), (ii) the best
data-driven configuration that executes each component upon
receipt of all input data (similar to some ROS deployments,
see §3.1), (iii) the best configuration with static deadlines
enforced by D3’s DEH , and (iv) a D3 execution with dynamic
deadlines enabled by our deadline allocation policy and ER-
DOS. The execution with our policy (D3) reduces collisions
by 68% over a periodic execution, and by 26% over the best
configuration with static deadlines because the policy reduces
the deadlines in challenging scenarios. Finally, we compare
the end-to-end response times of Pylot’s D3 execution with
dynamic deadlines with Pylot’s best configuration with static
deadlines. Fig. 12 shows that in most situations D3’s Pylot
execution runs a slow, high-accuracy configuration, but adapts
to fast configurations when the environment demands it.

Takeaway: ERDOS’ dynamic deadlines result in signifi-
cantly fewer collisions compared to the periodic execution
and static deadlines used in state-of-the-art platforms.

D3 0 0 8.7

Person Behind Truck
0 0 6.8

Traffic Jam

11 12 13

125
200
250
400
500

D
ea

dl
in

e
[m

s] 0 6.9 10
0 6.6 9.7
0 4.3 7.7
0 0 7.4
0 5.2 8.8

8 10 12

0 0 9.4
0 0 5.8
0 6.1 9.9
0 7.7 11

2.9 9.5 0
0

5

10

C
ol

lis
io

n
sp

ee
d

[m
/s

]

Driving Speed [m/s]

Figure 13. Versatility of D3’s Dynamic Deadlines. Configura-
tions with short deadlines reduce collision speed in the person be-
hind truck scenario (left), but increase it in the traffic jam scenario
(right). By contrast, D3 adapts Pylot’s deadlines depending on the
driving speed and scenario complexity resulting in fewer collisions.

7.4.2 In-depth Study of Scenarios. We study the benefits
of ERDOS’ realization of D3 using two challenging scenarios
that require the AV to adapt in order to avoid collisions.
Person Behind Truck. This scenario simulates a person il-
legally entering the AV’s lane (see video3). The scenario is
complicated by a truck that occludes the person until they en-
ter the AV’s lane. Thus, the AV cannot stop in time and must
perform an emergency swerving maneuver. Since this maneu-
ver requires a knee-jerk reaction, we expect the configurations
that minimize the response time to perform better.
Traffic Jam. This scenario simulates merging into a traffic
jam. The AV is required to come to a halt behind a vehicle and
a motorcycle, while the other lane is lined up with vehicles.
The motorcycle complicates this scenario as it requires the AV
to perceive the object from afar in order to prevent a collision.
Moreover, the vehicles on the other lane prevent the AV from
performing an emergency swerve. While the previous sce-
nario requires a fast response, this scenario needs consistent
high-quality responses from the AV in order to prevent an
otherwise-safe scenario from turning into an emergency.

In the experiment, we drive the AV at a fixed speed using a
fixed set of hardware resources (see §7). We execute Pylot’s
five configurations with static deadlines (§7.4) and Pylot’s D3
execution with dynamic deadlines computed by our policy.
We use the driving speed of the AV at the time of the collision
(i.e., collision speed) as a proxy for the impact of the collision,
where a speed of 0m/s shows that Pylot avoided a collision.

In Fig. 13 we plot the collision speed across varying speeds.
As expected, at a speed of 12m/s, the probability of success-
fully handling the person behind truck scenario increases with
a decrease in response time. In this scenario all but the fastest
configuration detect the person, which is visible 20m away.
Thus, the configuration with the lowest response time (200ms)
that detects the person 20m away prevents a collision, while
configurations with higher response times collide with the
person at collision speeds that increase with the response time.
We note that the configuration with the lowest response time
(125ms) collides as it detects the person too late (12m away)
due to its low perception accuracy. On the contrary, in the
traffic jam scenario, the slower, more accurate configurations
allow the AV to reliably stop at 10m/s. This is because the

465

EuroSys ’22, April 5–8, 2022, Rennes, France Ionel Gog, Sukrit Kalra, Peter Schafhalter, Joseph E. Gonzalez, and Ion Stoica

0

200

400

600
D3 (Static Deadlines)Visible Collision

11 12 13 14 15
0

200

400

600
D3 (Dynamic Deadlines)

Total
Perception
Planning

Time [s]

R
es

po
ns

e
Ti

m
e

[m
s]

Figure 14. Adapting to Deadlines. D3 enables Pylot’s compo-
nents to meet dynamic deadlines and avoid a collision.

motorcycle is partially occluded, and thus faster, less-accurate
models perform poorly. Fig. 14 shows how Pylot adapts as
our policy reduces the end-to-end deadline once the person is
visible in the person behind truck scenario.

Takeaway: ERDOS’ deadlines adapt in both scenarios,
and avoid more collisions than any static configuration3.

8 Related Work
Data-Driven Execution Model. Vendors [20, 28, 53, 94, 95]
are developing AV pipelines atop robotics platforms that pro-
vide a modular design and best-effort execution of the compo-
nents (e.g., ROS [77], ROS2 [58], CyberRT [30]). As a result,
vendors execute these pipelines as SLO-based best-effort ap-
plications that attempt to meet an environment-agnostic end-
to-end deadline [28, 29, 95]. The AV pipelines are deployed
as ROS/CyberRT processes, that either use the data-driven
execution model to run each component to completion upon
receiving all input (§3.1), which may delay downstream com-
ponents due to runtime variability, or run components period-
ically [1, 10], which preclude adaptations to meet dynamic
deadlines. Moreover, these platforms do not offer a system-
managed consistent view of time, and thus lack mechanisms
to specify and enforce deadlines, or reason about the avail-
able execution time [95]. By contrast, ERDOS enables the
development of D3 applications by offering a consistent view
of time via logical times, an automatic mapping of logical
time to wall-clock time, which components can use to reason
about deadlines and available execution time, and the ability
to apply reactive measures to mitigate missed deadlines.

Stream processing systems such as Flink [39], Cloud
Dataflow [6], MillWheel [21], and Naiad [74] also utilize
the data-driven execution model. Although, these systems
inspired elements of our design (e.g., logical time [6, 39, 74],
watermarks [22, 39, 93], intermediate results [17]), these
systems are designed for massively parallel data processing,
and embed architectural and implementational decisions that
make them unconducive to the development of AVs. For
example, Naiad paralellizes an application by partitioning
data across workers, which each execute an entire copy of
the dataflow computation (AV sensor data is not partition-
able). Moreover, these systems are unable to realize the D3

3Static vs dynamic deadlines in Pylot: https://tinyurl.com/y24p4g8d

execution model because, unlike ERDOS, they lack APIs to
specify environment-dependent deadlines and to implement
proactive strategies to meet these deadlines, and to apply
reactive measures when deadlines are missed.
Periodic Execution Model. Hard real-time systems conduct
schedulability analyses driven by WCET estimates to guar-
antee that deadline constraints are met [32, 36, 49, 56, 67,
69, 92]. However, AV components preclude the accurate esti-
mation of WCETs due to environment-dependent runtimes
and large input spaces [24, 25, 87], or the non-deterministic
nature of the algorithms they use [25, 43, 60, 97]. Thus, de-
veloping AVs as such systems requires use of conservative
WCETs to derive the periodicity of execution for each compo-
nent [48]. However, periodic executions cannot meet dynamic
deadlines, and trade accuracy to ensure that components with
a large gap between mean and worst-case execution time meet
deadlines [25, 35, 44]. To address the former, real-time appli-
cations implement mode changes [26, 42, 78], which depend
on WCETs to verify if transitions between modes lead to dead-
line misses [67, 78, 85, 92]. By contrast, adaptive real-time
systems [35, 63, 70, 80] support the execution of components
without WCET. These systems minimize deadline misses by
using feedback-based policies to choose the best service level
from multiple application-defined levels (similar to §5.3’s
changing implementations), but lack mechanisms to enforce
deadlines and mitigate deadline misses.

D3 subsumes prior systems by allowing the execution of
both mode changes and adaptive real-time applications. The
developers of D3 applications can specify mode changes us-
ing the deadline policy (πDP) and trigger them to perform
graceful degradation (on deadline misses or environment
changes) using D3’s feedback loop (§3). Furthermore, ER-
DOS’s use of timestamps and watermarks helps with tracking
the causality of messages back to sensor data, and along with
system-managed state makes ERDOS more amenable to anal-
ysis and verification than current AV platforms.

9 Conclusions
We highlight two key characteristics of AVs, and introduce
D3, an execution model for applications that must maximize
accuracy in the presence of dynamic deadlines. We realize
D3 in ERDOS, atop which we build an AV, and find that D3
reduces collisions by 68%. We hope that our artifacts will aid
the development of safer AVs, and inspire systems research.

Acknowledgements
We thank Ioan Stefanovici, our shepherd, and the anonymous
reviewers whose insightful comments helped improve the
paper. This research is supported by a NSF CISE Expeditions
Award CCF-1730628, and by gifts from Amazon Web Ser-
vices, Ant Group, Ericsson, Facebook, Futurewei, Google,
Intel, Microsoft, Scotiabank, and VMware.

466

https://tinyurl.com/y24p4g8d

D3: A Dynamic Deadline-Driven Approach for Building Autonomous Vehicles EuroSys ’22, April 5–8, 2022, Rennes, France

References
[1] Apollo Planning Frequency. https://github.com/ApolloAuto/apollo/

blob/master/modules/planning/common/planning_gflags.cc#L23.
[2] Apollo’s Traffic Light Perception. https://github.com/ApolloAuto/

apollo/blob/master/docs/specs/traffic_light.md.
[3] Argoverse. https://www.argoverse.org/.
[4] Automated Vehicles for Safety. https://www.nhtsa.gov/technology-

innovation/automated-vehicles-safety.
[5] Companies Have Spent Over $16 Billion on Robocars. It’s A Drop in

the Bucket. https://tinyurl.com/54ydc9zk.
[6] Google Cloud Dataflow. http://cloud.google.com/dataflow/.
[7] How Does a Self-Driving Car See? https://blogs.nvidia.com/blog/

2019/04/15/how-does-a-self-driving-car-see/.
[8] How Uber Self-Driving Cars See The World. https://www.

therobotreport.com/how-uber-self-driving-cars-see-world/.
[9] Introducing the 5th Generation Waymo Driver. https://blog.waymo.

com/2020/03/introducing-5th-generation-waymo-driver.html.
[10] Planning Loop Rate in Autoware AV. https://tinyurl.com/56m3uze2.
[11] Sight Distance Guidelines. https://mdotcf.state.mi.us/public/tands/

Details_Web/mdot_sight_distance_guidelines.pdf.
[12] Snow and Ice Pose a Vexing Obstacle for Self-Driving Cars.

https://www.wired.com/story/snow-ice-pose-vexing-obstacle-self-
driving-cars/.

[13] The CARLA Autonomous Driving Challenge. https://leaderboard.
carla.org/.

[14] The State of the Self-Driving Car Race in 2020. https://www.
bloomberg.com/features/2020-self-driving-car-race/.

[15] To Make Self-Driving Cars Safe, We Also Need Better Roads and
Infrastructure. https://tinyurl.com/2p8wz3t7.

[16] Weather Creates Challenges For Next Generation Of Vehicles. https:
//tinyurl.com/yzjwcvwa.

[17] Daniel J Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur
Cetintemel, Mitch Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner,
Anurag Maskey, Alex Rasin, Esther Ryvkina, Nesime Tatbul, Ying
Xing, and Stan Zdonik. The Design of the Borealis Stream Processing
Engine. In Proceedings of the 2nd Biennial Conference on Innovative
Data Systems Research (CIDR), pages 277–289, 2005.

[18] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irv-
ing, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga,
Sherry Moore, Derek G Murray, Benoit Steiner, Paul Tucker, Vijay
Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. TensorFlow: A System for Large-Scale Machine Learning. In
Proceedings of the 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), November 2016.

[19] Michael Aeberhard, Thomas Kühbeck, Bernhard Seidl, M Friedl,
J Thomas, and O Scheickl. Automated Driving with ROS at BMW.
ROSCon 2015 Hamburg, Germany, 2015.

[20] Michael Aeberhard, Thomas Kühbeck, Bernhard Seidl, Martin Friedl,
Julian Thomas, and Oliver Scheickl. Automated Driving with ROS at
BMW. http://www.ros.org/news/2016/05/michael-aeberhard-bmw-
automated-driving-with-ros-at-bmw.html.

[21] Tyler Akidau, Alex Balikov, Kaya Bekiroğlu, Slava Chernyak, Josh
Haberman, Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom,
and Sam Whittle. MillWheel: Fault-tolerant Stream Processing at
Internet Scale. Proceedings of the VLDB, 6(11), August 2013.

[22] Tyler Akidau, Edmon Begoli, Slava Chernyak, Fabian Hueske,
Kathryn Knight, Kenneth Knowles, Daniel Mills, and Dan Sotolongo.
Watermarks in Stream Processing Systems: Semantics and Compara-
tive Analysis of Apache Flink and Google Cloud Dataflow. Proceed-
ings of the VLDB Endowment, 14(12), 2021.

[23] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak,
Rafael J Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel
Mills, Frances Perry, Eric Schmidt, et al. The Dataflow Model: A

Practical Approach to Balancing Correctness, Latency, and Cost in
Massive-scale, Unbounded, Out-of-order Data Processing. Proceed-
ings of the VLDB Endowment, 8(12):1792–1803, 2015.

[24] Sergi Alcaide, Leonidas Kosmidis, Hamid Tabani, Carles Hernandez,
Jaume Abella, and Francisco J Cazorla. Safety-Related Challenges
and Opportunities for GPUs in the Automotive Domain. IEEE Micro,
38(6):46–55, 2018.

[25] Miguel Alcon, Hamid Tabani, Leonidas Kosmidis, Enrico Mezzetti,
Jaume Abella, and Francisco J Cazorla. Timing of Autonomous Driv-
ing Software: Problem Analysis and Prospects for Future Solutions.
In Proceedings of the 26th IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), pages 267–280. IEEE, 2020.

[26] Luis Almeida, Sebastian Fischmeister, Madhukar Anand, and Insup
Lee. A Dynamic Scheduling Approach to Designing Flexible Safety-
Critical Systems. In Proceedings of the 7th ACM & IEEE International
Conference on Embedded Software, pages 67–74, 2007.

[27] D. Anguelov. Taming The Long Tail of Autonomous Driving Chal-
lenges. https://www.youtube.com/watch?v=Q0nGo2-y0xY, 2019.

[28] Autoware. Autoware User’s Manual - Document Version 1.1. https:
//tinyurl.com/2v2jkk9n.

[29] Baidu. Apollo 3.0 Software Architecture. https://tinyurl.com/
mhd6dfka.

[30] Baidu. Apollo Cyber RT. https://github.com/ApolloAuto/apollo/tree/
master/cyber.

[31] Baidu. Apollo Data Open Platform. http://data.apollo.auto/.
[32] Sanjoy Baruah. Improved Multiprocessor Global Schedulability Anal-

ysis of Sporadic DAG Task Systems. In Proceedings of the 26th

Euromicro Conference on Real-Time Systems (ECRTS), pages 97–105.
IEEE, 2014.

[33] Sanjoy Baruah, Vincenzo Bonifaci, and Alberto Marchetti-
Spaccamela. The Global EDF Scheduling of Systems of Conditional
Sporadic DAG Tasks. In Proceedings of the 27th Euromicro Confer-
ence on Real-Time Systems (ECRTS), pages 222–231. IEEE, 2015.

[34] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and Ben Up-
croft. Simple Online and Realtime Tracking. In Proceedings of
the 23th IEEE International Conference on Image Processing (ICIP),
pages 3464–3468, 2016.

[35] Aaron Block, Björn Brandenburg, James H Anderson, and Stephen
Quint. An Adaptive Framework for Multiprocessor Real-Time Sys-
tem. In Proceedings of the 20th Euromicro Conference on Real-Time
Systems (ECRTS), pages 23–33. IEEE, 2008.

[36] Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, Sebastian Stiller,
and Andreas Wiese. Feasibility Analysis in the Sporadic DAG Task
Model. In Proceedings of the 25th Euromicro Conference on Real-
Time Systems (ECRTS), pages 225–233. IEEE, 2013.

[37] Sol Boucher, Anuj Kalia, David G Andersen, and Michael Kaminsky.
Lightweight Preemptible Functions. In Proceedings of the 31st USE-
NIX Annual Technical Conference (ATC), pages 465–477, 2020.

[38] Giorgio C Buttazzo, Giuseppe Lipari, Marco Caccamo, and Luca
Abeni. Elastic Scheduling for Flexible Workload Management. IEEE
Transactions on Computers, 51(3):289–302, 2002.

[39] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl,
Seif Haridi, and Kostas Tzoumas. Apache Flink: Stream and Batch
Processing in a Single Engine. Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering, 36(4), 2015.

[40] Don Carney, Uğur Çetintemel, Mitch Cherniack, Christian Con-
vey, Sangdon Lee, Greg Seidman, Nesime Tatbul, Stan Zdonik, and
Michael Stonebraker. Monitoring Streams - A New Class of Data
Management Applications. In Proceedings of the 28th International
Conference on Very Large Databases (VLDB), pages 215–226, 2002.

[41] Daniel Casini, Tobias Blaß, Ingo Lütkebohle, and Björn B Branden-
burg. Response-Time Analysis of ROS 2 Processing Chains Under
Reservation-Based Scheduling. In Proceedings of the 31st Euromicro
Conference on Real-Time Systems (ECRTS), 2019.

467

https://github.com/ApolloAuto/apollo/blob/master/modules/planning/common/planning_gflags.cc#L23
https://github.com/ApolloAuto/apollo/blob/master/modules/planning/common/planning_gflags.cc#L23
https://github.com/ApolloAuto/apollo/blob/master/docs/specs/traffic_light.md
https://github.com/ApolloAuto/apollo/blob/master/docs/specs/traffic_light.md
https://www.argoverse.org/
https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
https://tinyurl.com/54ydc9zk
http://cloud.google.com/dataflow/
https://blogs.nvidia.com/blog/2019/04/15/how-does-a-self-driving-car-see/
https://blogs.nvidia.com/blog/2019/04/15/how-does-a-self-driving-car-see/
https://www.therobotreport.com/how-uber-self-driving-cars-see-world/
https://www.therobotreport.com/how-uber-self-driving-cars-see-world/
https://blog.waymo.com/2020/03/introducing-5th-generation-waymo-driver.html
https://blog.waymo.com/2020/03/introducing-5th-generation-waymo-driver.html
https://tinyurl.com/56m3uze2
https://mdotcf.state.mi.us/public/tands/Details_Web/mdot_sight_distance_guidelines.pdf
https://mdotcf.state.mi.us/public/tands/Details_Web/mdot_sight_distance_guidelines.pdf
https://www.wired.com/story/snow-ice-pose-vexing-obstacle-self-driving-cars/
https://www.wired.com/story/snow-ice-pose-vexing-obstacle-self-driving-cars/
https://leaderboard.carla.org/
https://leaderboard.carla.org/
https://www.bloomberg.com/features/2020-self-driving-car-race/
https://www.bloomberg.com/features/2020-self-driving-car-race/
https://tinyurl.com/2p8wz3t7
https://tinyurl.com/yzjwcvwa
https://tinyurl.com/yzjwcvwa
http://www.ros.org/news/2016/05/michael-aeberhard-bmw-automated-driving-with-ros-at-bmw.html
http://www.ros.org/news/2016/05/michael-aeberhard-bmw-automated-driving-with-ros-at-bmw.html
https://www.youtube.com/watch?v=Q0nGo2-y0xY
https://tinyurl.com/2v2jkk9n
https://tinyurl.com/2v2jkk9n
https://tinyurl.com/mhd6dfka
https://tinyurl.com/mhd6dfka
https://github.com/ApolloAuto/apollo/tree/master/cyber
https://github.com/ApolloAuto/apollo/tree/master/cyber
http://data.apollo.auto/

EuroSys ’22, April 5–8, 2022, Rennes, France Ionel Gog, Sukrit Kalra, Peter Schafhalter, Joseph E. Gonzalez, and Ion Stoica

[42] Tianyang Chen and Linh Thi Xuan Phan. SafeMC: A System for the
Design and Evaluation of Mode-Change Protocols. In Proceedings of
the 24th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 105–116. IEEE, 2018.

[43] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia. Multi-
View 3D Object Detection Network for Autonomous Driving. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1907–1915, 2017.

[44] Hoon Sung Chwa, Kang G Shin, Hyeongboo Baek, and Jinkyu
Lee. Physical-State-Aware Dynamic Slack Management for Mixed-
Criticality Systems. In Proceedings of the IEEE Real-Time and Embed-
ded Technology and Applications Symposium (RTAS), pages 129–139.
IEEE, 2018.

[45] Laurene Claussmann, Marc Revilloud, Dominique Gruyer, and
Sébastien Glaser. A Review of Motion Planning for Highway Au-
tonomous Driving. IEEE Transactions on Intelligent Transportation
Systems, 21(5):1826–1848, 2019.

[46] Henry Claypool, Amitai Bin-Nun, and Jeffrey Gerlach. Self-Driving
Cars: The Impact on People with Disabilities. Newton, MA: Ruderman
Family Foundation, 2017.

[47] B Dasarathy. Timing constraints of real-time systems: Constructs for
expressing them, methods of validating them. IEEE Transactions on
Software Engineering, (1):80–86, 1985.

[48] Dionisio De Niz, Karthik Lakshmanan, and Ragunathan Rajkumar.
On the Scheduling of Mixed-Criticality Real-Time Task Sets. In
Proceedings of the 30th IEEE Real-Time Systems Symposium (RTSS),
pages 291–300. IEEE, 2009.

[49] Patricia Derler, Thomas H Feng, Edward A Lee, Slobodan Matic,
Hiren D Patel, Yang Zheo, and Jia Zou. PTIDES: A Programming
Model for Distributed Real-Time Embedded Systems. Technical
report, University of California, Berkeley, 2008.

[50] Dirk Thomas. Changes between ROS 1 and ROS 2. http://design.
ros2.org/articles/changes.html.

[51] Dmitri Dolgov, Sebastian Thrun, Michael Montemerlo, and James
Diebel. Practical Search Techniques in Path Planning for Autonomous
Driving. In Proceedings of the 1st International Symposium on Search
Techniques in Artificial Intelligence and Robotics (STAIR), volume
1001, pages 18–80, 2008.

[52] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez,
and Vladlen Koltun. CARLA: An Open Urban Driving Simulator. In
Proceedings of the 1st Conference on Robot Learning (CoRL), pages
1–16, 2017.

[53] Andreas Fregin, Markus Roth, Markus Braun, Sebastian Krebs,
and Fabian Flohr. Building a Computer Vision Research Vehi-
cle with ROS. http://www.ros.org/news/2018/07/roscon-2017-
building-a-computer-vision-research-vehicle-with-ros----andreas-
fregin.html.

[54] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji Prabhakar,
Mendel Rosenblum, and Amin Vahdat. Exploiting a Natural Net-
work Effect for Scalable, Fine-Grained Clock Synchronization. In
Proceedings of the 15th USENIX Conference on Networked Systems
Design and Implementation (NSDI), pages 81–94, 2018.

[55] Ionel Gog, Sukrit Kalra, Peter Schafhalter, Matthew A. Wright,
Joseph E. Gonzalez, and Ion Stoica. Pylot: A Modular Platform
for Exploring Latency-Accuracy Tradeoffs in Autonomous Vehicles.
In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), pages 8806–8813. IEEE, 2021.

[56] Joël Goossens, Shelby Funk, and Sanjoy Baruah. Priority-Driven
Scheduling of Periodic Task Systems on Multiprocessors. Real-time
Systems, 25(2):187–205, 2003.

[57] Matthew P. Grosvenor, Malte Schwarzkopf, Ionel Gog, Robert N. M.
Watson, Andrew W. Moore, Steven Hand, and Jon Crowcroft. Queues
don’t matter when you can JUMP them! In Proceedings of the 12th

USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI), May 2015.

[58] Christopher Ho, Sumanth Nirmal, Juan Pablo Samper, Serge Nikulin,
Anup Pemmaiah, Dejan Pangercic, and Jan Becker. ROS2 on
Autonomous Vehicles. https://roscon.ros.org/2018/presentations/
ROSCon2018_ROS2onAutonomousDrivingVehicles.pdf.

[59] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Ko-
rattikara, Alireza Fathi, Ian Fischer, Zbigniew Wojna, Yang Song, Ser-
gio Guadarrama, and Kevin Murphy. Speed/Accuracy Trade-Offs for
Modern Convolutional Object Detectors. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
July 2017.

[60] Sertac Karaman and Emilio Frazzoli. Sampling-Based Algorithms
for Optimal Motion Planning. The International Journal of Robotics
Research, 30(7):846–894, 2011.

[61] A. Karpathy. CVPR ’20 - Workshop on Scalability in Autonomous
Driving. https://sites.google.com/view/cvpr20-scalability/archived-
talks/keynotes, 2020.

[62] Christos Katrakazas, Mohammed Quddus, Wen-Hua Chen, and Lipika
Deka. Real-time Motion Planning Methods for Autonomous On-Road
Driving: State-of-the-art and Future Research Directions. Transporta-
tion Research Part C: Emerging Technologies, 60:416–442, 2015.

[63] T-W Kuo and Aloysius K Mok. Load Adjustment in Adaptive Real-
Time Systems. In Proceedings of the 12th Real-Time Systems Sympo-
sium (RTSS), pages 160–161. IEEE, 1991.

[64] Steven M. LaValle. Planning Algorithms. Cambridge University Press,
USA, 2006.

[65] Mengtian Li, Yuxiong Wang, and Deva Ramanan. Towards Streaming
Perception. In Proceedings of the European Conference on Computer
Vision (ECCV), August 2020.

[66] Shih-Chieh Lin, Yunqi Zhang, Chang-Hong Hsu, Matt Skach, Md E.
Haque, Lingjia Tang, and Jason Mars. The Architectural Implications
of Autonomous Driving: Constraints and Acceleration. In Proceedings
of the 23rd International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pages
751–766, 2018.

[67] Chung Laung Liu and James W Layland. Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment. Journal of the
ACM (JACM), 20(1):46–61, 1973.

[68] Jane W.S. Liu. Real-Time Systems. Prentice Hall, 2000.
[69] Marten Lohstroh, Martin Schoeberl, Andrés Goens, Armin Wasicek,

Christopher Gill, Marjan Sirjani, and Edward A Lee. Actors Revisited
for Time-Critical Systems. In Proceedings of the 56th ACM/IEEE
Design Automation Conference (DAC), pages 1–4. IEEE, 2019.

[70] Chenyang Lu, John A Stankovic, Tarek F Abdelzaher, Gang Tao,
Sang Hyuk Son, and Michael Marley. Performance Specifications and
Metrics for Adaptive Real-Time Systems. In Proceedings of the 21st

Real-Time Systems Symposium (RTSS), pages 13–23. IEEE, 2000.
[71] Yuya Maruyama, Shinpei Kato, and Takuya Azumi. Exploring the per-

formance of ros2. In Proceedings of the 13th International Conference
on Embedded Software, pages 1–10, 2016.

[72] Matt Ranney. Self-Driving Cars As Edge Computing Devices. https:
//www.infoq.com/presentations/uber-atg/.

[73] Michele Bertoncello, and Dominik Wee. Ten Ways Autonomous
Driving Could Redefine the Automotive World. https://tinyurl.com/
2srpyv8d.

[74] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard,
Paul Barham, and Martín Abadi. Naiad: A Timely Dataflow System.
In Proceedings of the 24th ACM Symposium on Operating Systems
Principles (SOSP), pages 439–455, November 2013.

[75] National Highway Traffic Safety Administration. Traffic Safety
Facts (2017 Data). https://crashstats.nhtsa.dot.gov/Api/Public/
ViewPublication/812687.

[76] Brian Paden, Michal Čáp, Sze Zheng Yong, Dmitry Yershov, and
Emilio Frazzoli. A Survey of Motion Planning and Control Techniques
for Self-Driving Urban Vehicles. IEEE Transactions on Intelligent

468

http://design.ros2.org/articles/changes.html
http://design.ros2.org/articles/changes.html
http://www.ros.org/news/2018/07/roscon-2017-building-a-computer-vision-research-vehicle-with-ros----andreas-fregin.html
http://www.ros.org/news/2018/07/roscon-2017-building-a-computer-vision-research-vehicle-with-ros----andreas-fregin.html
http://www.ros.org/news/2018/07/roscon-2017-building-a-computer-vision-research-vehicle-with-ros----andreas-fregin.html
https://roscon.ros.org/2018/presentations/ROSCon2018_ROS2onAutonomousDrivingVehicles.pdf
https://roscon.ros.org/2018/presentations/ROSCon2018_ROS2onAutonomousDrivingVehicles.pdf
https://sites.google.com/view/cvpr20-scalability/archived-talks/keynotes
https://sites.google.com/view/cvpr20-scalability/archived-talks/keynotes
https://www.infoq.com/presentations/uber-atg/
https://www.infoq.com/presentations/uber-atg/
https://tinyurl.com/2srpyv8d
https://tinyurl.com/2srpyv8d
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812687
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812687

D3: A Dynamic Deadline-Driven Approach for Building Autonomous Vehicles EuroSys ’22, April 5–8, 2022, Rennes, France

Vehicles, 1(1):33–55, 2016.
[77] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,

Jeremy Leibs, Rob Wheeler, and Andrew Y Ng. ROS: An Open-
Source Robot Operating System. In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA); Workshop on
Open Source Robotics, volume 3, page 5, May 2009.

[78] Jorge Real and Alfons Crespo. Mode Change Protocols for Real-
Time Systems: A Survey and a New Proposal. Real-time systems,
26(2):161–197, 2004.

[79] Nicholas Rhinehart, Kris M Kitani, and Paul Vernaza. R2P2: A
Reparameterized Pushforward Policy for Diverse, Precise Generative
Path Forecasting. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 772–788, 2018.

[80] Daniela Rosu, Karsten Schwan, Sudhakar Yalamanchili, and Rakesh
Jha. On Adaptive Resource Allocation for Complex Real-Time Ap-
plications. In Proceedings of the 18th Real-Time Systems Symposium
(RTSS), pages 320–329. IEEE, 1997.

[81] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski.
Conflict-Free Replicated Data Types. In Symposium on Self-Stabilizing
Systems, pages 386–400. Springer, 2011.

[82] Society of Automotive Engineers. Taxonomy and Definitions for
Terms Related to On-Road Motor Vehicle Automated Driving Systems.
SAE International, 2018.

[83] Utkarsh Srivastava and Jennifer Widom. Flexible time management
in data stream systems. In Proceedings of the twenty-third ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, pages 263–274, 2004.

[84] State of California Department of Motor Vehicles. Autonomous Ve-
hicle Disengagement Reports 2018. https://www.dmv.ca.gov/portal/
dmv/detail/vr/autonomous/disengagement_report_2019.

[85] Nikolay Stoimenov, Simon Perathoner, and Lothar Thiele. Reliable
Mode Changes in Real-Time Systems with Fixed Priority or EDF
Scheduling. In Proceedings of the Design, Automation & Test in
Europe Conference & Exhibition (DATE), pages 99–104. IEEE, 2009.

[86] H Streich. Taskpair-Scheduling: An Approach for Dynamic Real-Time
Systems. In Second Workshop on Parallel and Distributed Real-Time
Systems, pages 24–31. IEEE, 1994.

[87] Hamid Tabani, Leonidas Kosmidis, Jaume Abella, Francisco J Ca-
zorla, and Guillem Bernat. Assessing the Adherence of an Industrial
Autonomous Driving Framework to ISO 26262 Software Guidelines.
In Proceedings of the 56th Annual Design Automation Conference
(DAC), pages 1–6. IEEE, 2019.

[88] Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable
and Efficient Object Detection. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2020.

[89] Charlie Tang and Russ R Salakhutdinov. Multiple Futures Prediction.
In Proceedings of the International Conference on Advances in Neu-
ral Information Processing Systems (NeurIPS), pages 15398–15408,
2019.

[90] Nesime Tatbul, Ugur Çetintemel, and Stan Zdonik. Staying Fit: Effi-
cient Load Shedding Techniques for Distributed Stream Processing.
In Proceedings of the 33rd International Conference on Very large

Databases (VLDB), pages 159–170, 2007.
[91] Nesime Tatbul, Uğur Çetintemel, Stan Zdonik, Mitch Cherniack, and

Michael Stonebraker. Load Shedding in a Data Stream Manager.
In Proceedings of the 29th International Conference on Very Large
Databases (VLDB), pages 309–320, 2003.

[92] Ken Tindell, Alan Burns, and Andy J Wellings. Mode Changes In
Priority Pre-Emptively Scheduled Systems. In Proceedings of the 13th

Real-Time Systems Symposium (RTSS), volume 92, pages 100–109.
Citeseer, 1992.

[93] Peter A. Tucker, David Maier, Tim Sheard, and Leonidas Fegaras.
Exploiting Punctuation Semantics in Continuous Data Streams. IEEE
Transactions on Knowledge and Data Engineering, 15(3):555–568,
2003.

[94] Udacity. An Open Source Self-Driving Car. https://www.udacity.
com/self-driving-car.

[95] Nicolo Valigi. Lessons Learned Building a Self-Driving Car
on ROS. https://roscon.ros.org/2018/presentations/ROSCon2018_
LessonsLearnedSelfDriving.pdf, 2018.

[96] Peng Wang, Xinyu Huang, Xinjing Cheng, Dingfu Zhou, Qichuan
Geng, and Ruigang Yang. The Apolloscape Open Dataset for Au-
tonomous Driving and its Application. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2019.

[97] Yan Wang, Zihang Lai, Gao Huang, Brian H Wang, Laurens Van
Der Maaten, Mark Campbell, and Kilian Q Weinberger. Anytime
Stereo Image Depth Estimation on Mobile Devices. In 2019 In-
ternational Conference on Robotics and Automation (ICRA), pages
5893–5900. IEEE, 2019.

[98] Moritz Werling, Julius Ziegler, Sören Kammel, and Sebastian Thrun.
Optimal Trajectory Generation for Dynamic Street Scenarios in a
Frenet Frame. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), pages 987–993. IEEE, 2010.

[99] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple Online and
Realtime Tracking with a Deep Association Metric. In Proceedings of
the 24th IEEE International Conference on Image Processing (ICIP),
pages 3645–3649. IEEE, 2017.

[100] Wenda Xu, Junqing Wei, John M Dolan, Huijing Zhao, and Hongbin
Zha. A Real-Time Motion Planner with Trajectory Optimization for
Autonomous Vehicles. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages 2061–2067.
IEEE, 2012.

[101] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker, and
Ion Stoica. Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing. In Proceedings of the 9th USE-
NIX Conference on Networked Systems Design and Implementation
(NSDI), pages 15–28, April 2012.

[102] Zheng Zhu, Qiang Wang, Li Bo, Wei Wu, Junjie Yan, and Weiming Hu.
Distractor-Aware Siamese Networks for Visual Object Tracking. In
Proceedings of the European Conference on Computer Vision (ECCV),
2018.

[103] Shlomo Zilberstein. Using Anytime Algorithms in Intelligent Systems.
AI magazine, 17(3):73–83, 1996.

469

https://www.dmv.ca.gov/portal/dmv/detail/vr/autonomous/disengagement_report_2019
https://www.dmv.ca.gov/portal/dmv/detail/vr/autonomous/disengagement_report_2019
https://www.udacity.com/self-driving-car
https://www.udacity.com/self-driving-car
https://roscon.ros.org/2018/presentations/ROSCon2018_LessonsLearnedSelfDriving.pdf
https://roscon.ros.org/2018/presentations/ROSCon2018_LessonsLearnedSelfDriving.pdf

EuroSys ’22, April 5–8, 2022, Rennes, France Ionel Gog, Sukrit Kalra, Peter Schafhalter, Joseph E. Gonzalez, and Ion Stoica

A Artifact Appendix
A.1 Artifact
We provide the following two software artifacts for reproduc-
ing the experiments discussed in the paper:
∙ ERDOS, the open-source distributed system for the execu-
tion of autonomous vehicle (AV) pipelines, and
∙ Pylot, the open-source state-of-the-art AV pipeline that
works across simulators and real-vehicles.

A.2 Description & Requirements
A.2.1 How to access.
The artifacts are located at the following public repositories:
∙ ERDOS (DOI 10.5281/zenodo.6345345): https://github.
com/erdos-project/erdos
∙ Pylot (DOI 0.5281/zenodo.6345352): https://github.com/
erdos-project/pylot

We also publicly released the code, logs and plotting scripts
for our experiments (DOI 10.5281/zenodo.6345350) at https:
//github.com/erdos-project/erdos-experiments.
A.2.2 Hardware dependencies.
All experiments were performed atop a machine having 2
× Xeon Gold 6226 CPUs, 128GB of RAM, and 2 × 24GB
Titan-RTX GPUs, running Linux Kernel 5.3.0.

We note that executing the experiments on different hard-
ware could significantly affect the results as any differences in
end-to-end response may cause the simulation experiments to
diverge from the simulations we executed (e.g., an increased
response time might cause an early collision, but avoid later
collisions due to the AV being at a different location). More-
over, due to limitations in the simulator’s performance (simu-
lating 1 second takes approximately 10-30 seconds in wall-
clock time), running our experiments takes approximately 1
month. To address these issues, we provide logs of our experi-
ments along with scripts for analyzing the data and generating
figures in our experiments repository.
A.2.3 Software dependencies.
ERDOS’s performance vs. other systems. To compare ER-
DOS’ performance to other systems used for AV development,
we used the following software:
∙ Docker 19.03.13
∙ docker-compose 1.29.1
∙ Apache Maven 3.6.0
∙ Python 3.6.9 with Pandas 1.1.4
∙ Rust nightly-2021-12-04

Efficacy of ERDOS and the D3 execution model. We pro-
vide a Docker image with ERDOS, Pylot, and the CARLA
simulator configured. The image can be retrieved by run-
ning docker pull erdosproject/pylot:v0.3.2. Thus,
these experiments only depend on NVIDIA Docker 2.6.0.

A.2.4 Benchmarks. None.

A.3 Set-up
Clone the experiments repository with

1 git clone \
2 https://github.com/erdos-project/erdos-experiments.git

From the root of the repository, run the following to down-
load the logs of the experiments and reproduce the figures:

1 ./download_data.sh
2 # Verify that the experiments directory contains log data
3 # of our experiments.
4 # Install dependencies required to run the plotting
5 # scripts.
6 pip3 install -r requirements.txt
7 cd plotting_scripts
8 ./generate_plots.sh
9 # The graphs will be generated in

10 # plotting_scripts/graphs.

Systems comparisons. Run the following to install the soft-
ware dependencies for the systems experiments:

1 bash systems-experiments/scripts/install_dependencies.sh

AV experiments. Run the required Docker container:

1 docker pull erdosproject/pylot:v0.3.2
2 nvidia-docker run -itd --name pylot -p 20022:22 \
3 erdosproject/pylot /bin/bash

To ensure that the image correctly runs on your hardware,
start the simulator in the container:

1 nvidia-docker exec -i -t pylot\
2 /home/erdos/workspace/pylot/scripts/run_simulator.sh

In another terminal, start Pylot in the container:

1 nvidia-docker exec -i -t pylot /bin/bash
2 cd ~/workspace/pylot/
3 # Execute Pylot using a Faster-RCNN object detector.
4 python3 pylot.py --flagfile=configs/detection.conf

To verify that the simulation is progressing and the AV is de-
tecting obstacles, inspect ∼/workspace/pylot/pylot.log.

A.4 Evaluation workflow
A.4.1 Major Claims.

∙ (C1): ERDOS outperforms similar state-of-the-art exe-
cution systems and scales to large AV pipelines. This
claim is proven by experiments (E1), (E2) and (E3)
described in §7.2 and illustrated in Fig. 8.

∙ (C2): ERDOS implements D3 by swiftly executing πDP,
enabling proactive strategies to meet deadlines, and
rapidly taking reactive measures when deadlines are
missed. This claim is proven by (E4) and (E5) described
in §7.3, whose results are shown in Fig. 9 and Fig. 10.

∙ (C3): ERDOS’ implementation of D3 offers a 68% re-
duction in collisions compared to prior execution mod-
els. This claim is supported by (E6) and (E7) described
in §7.4.1, and illustrated in Fig. 11 and Fig. 12.

470

https://doi.org/10.5281/zenodo.6345345
https://github.com/erdos-project/erdos
https://github.com/erdos-project/erdos
https://doi.org/0.5281/zenodo.6345352
https://github.com/erdos-project/pylot
https://github.com/erdos-project/pylot
https://doi.org/10.5281/zenodo.6345350
https://github.com/erdos-project/erdos-experiments
https://github.com/erdos-project/erdos-experiments

D3: A Dynamic Deadline-Driven Approach for Building Autonomous Vehicles EuroSys ’22, April 5–8, 2022, Rennes, France

∙ (C4): ERDOS’ instantiation of D3’s dynamic deadlines
enables the AV to adapt in two opposite scenarios and
avoid more collisions than any static configuration. This
claim is proven by (E8) and (E9) described in §7.4.2,
whose results are illustrated in Fig. 13 and Fig. 14.

A.4.2 Experiments. In the following text, we first lay out
the instructions for executing the systems experiments, fol-
lowed by the AV experiments.

Experiments (E1, E2, and E3): [60 human-minutes + 10
compute-hours]: To run all the system benchmark experi-
ments, execute the following commands:

1 # Runs the ERDOS system experiments.
2 cd systems-experiments/erdos-experiments
3 bash scripts/run_all.sh

The results of the experiments will be stored as CSV files in
systems-experiments/erdos-experiments/results/$(hostname)/

1 # Runs the Flink system experiments.
2 cd systems-experiments/flink-experiments
3 bash scripts/run_all.sh

The results of the experiments will be stored as CSV files in
systems-experiments/flink-experiments/results/$(hostname)/

1 # Runs the ROS system experiments.
2 cd systems-experiments/ros-experiments
3 bash scripts/run_all.sh

The results of the experiments will be stored as CSV files
in systems-experiments/ros-experiments/results/$(hostname)/

To generate §7.2 from these logs, execute the following:

1 # Script for Fig 8 (a)
2 cd ${ERDOS_EXPERIMENTS_HOME}/plotting_scripts
3 HOST=$(hostname)
4 python3 plot_msg_size_latency.py \
5 "../eurosys_systems_experiments/$HOST/erdos/\
6 msg-size-latency-intra-process.csv" \
7 "../eurosys_systems_experiments/$HOST/flink/\
8 msg-size-latency-intra-process.csv" \
9 "../eurosys_systems_experiments/$HOST/erdos/\

10 msg-size-latency-inter-process.csv" \
11 "../eurosys_systems_experiments/$HOST/flink/\
12 msg-size-latency-inter-process.csv" \
13 "../eurosys_systems_experiments/$HOST/ros/\
14 msg-size-latency-inter-process.csv"

1 # Script for Fig 8 (b)
2 cd ${ERDOS_EXPERIMENTS_HOME}/plotting_scripts
3 HOST=$(hostname)
4 python3 plot_broadcast_latency.py \
5 "../eurosys_systems_experiments/$HOST/erdos/\
6 broadcast-latency-intra-process.csv" \
7 "../eurosys_systems_experiments/$HOST/flink/\
8 broadcast-latency-intra-process.csv" \
9 "../eurosys_systems_experiments/$HOST/erdos/\

10 broadcast-latency-inter-process.csv" \
11 "../eurosys_systems_experiments/$HOST/flink/\
12 broadcast-latency-inter-process.csv" \
13 "../eurosys_systems_experiments/$HOST/ros/\
14 broadcast-latency-inter-process.csv"

1 # Script for Fig 8 (c)
2 cd ${ERDOS_EXPERIMENTS_HOME}/plotting_scripts
3 HOST=$(hostname)
4 python3 plot_synthetic_pipeline.py \
5 "../eurosys_systems_experiments/$HOST/erdos/\
6 synthetic-pipeline-intra-process.csv" \
7 "../eurosys_systems_experiments/$HOST/erdos/\
8 synthetic-pipeline-intra-process.csv"

Experiments (E4-E9): [600 human-minutes + 720 compute-
hours]: Due to a lack of space to list out the complex steps
required to run the experiments involving the Pylot AV
pipeline and the CARLA simulator, we refer the reader to
the README of the experiments repository, which provides
instructions for running the experiments discussed above.

A.5 Notes on Reusability
We developed and open-sourced Pylot with a broader objec-
tive of enabling the research community to study the effects of
latency and accuracy of their innovations in individual parts
of the AV pipeline on its end-to-end driving behavior. To help
achieve this goal, Pylot was built with the key requirements
of modularity, portability and debuggability.

Pylot provides a “plug-and-play” architecture for the indi-
vidual components of the AV pipeline and comes equipped
with ground-truth implementations for various components.
This allows developers to easily swap their new models and
algorithms for the old ones, and compare the effects of their
innovation on our extended CARLA challenge benchmark.
Furthermore, developers can use ground-truth implementa-
tions for the remainder of the pipeline to isolate the effects of
their components for the purposes of debuggability.

Pylot’s pseudo-asynchronous mode allows developers to
test the effects of the runtime of their components on the
end-to-end driving behavior of the AV pipeline. We hope that
the feature aids component developers in realistically testing
the effects of their components in simulation, and minimize
the cost, time and effort required to port the components from
simulation to real-world AVs.

We achieve these key goals by developing Pylot atop ER-
DOS. Specifically, Pylot uses D3 to implement a “plug-and-
play” architecture which allows developers to modify compo-
nents without cascading changes to downstream components.

We hope that our artifacts: ERDOS, Pylot, and our ex-
tended AV benchmark atop the CARLA challenge aid a
broader research agenda for the development of safe AVs.

471

https://github.com/erdos-project/erdos-experiments

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 C1: Environment-dependent deadlines
	2.2 C2: Environment-dependent runtime

	3 D3: Dynamic Deadline-Driven Execution
	3.1 Related Execution Models

	4 Introduction to ERDOS
	4.1 Primer on Streaming Systems
	4.2 Computation Structure of an ERDOS Application
	4.3 ERDOS' API

	5 Achieving Dynamic End-to-End Deadlines
	5.1 Deadline Specification
	5.2 Environment-Dependent Deadlines
	5.3 Meeting Deadlines
	5.4 Handling Deadline Misses

	6 ERDOS' Implementation
	6.1 Communication
	6.2 Operator Execution
	6.3 Deadline Management

	7 Evaluation
	7.1 Pylot: an AV Development Platform
	7.2 ERDOS' Performance vs. Other Systems
	7.3 Efficacy of ERDOS' Deadline Mechanisms
	7.4 Efficacy of the D3 Execution Model

	8 Related Work
	9 Conclusions
	References
	A Artifact Appendix
	A.1 Artifact
	A.2 Description & Requirements
	A.3 Set-up
	A.4 Evaluation workflow
	A.5 Notes on Reusability

