GRETEL: Lightweight Fault Localization for
OpenStack

Ayush Goel*
IBM Research

ABSTRACT

Like any other distributed system, cloud management stacks
such as OpenStack, are susceptible to faults whose root
cause is often hard to diagnose and may take hours or days
to fix. We present GRETEL, a system that leverages non-
intrusive system monitoring, to expedite root cause analysis
of both operational and performance faults manifesting in
OpenStack operations. GRETEL uses unique operational
fingerprints to quickly identify faulty operations at runtime.
GRETEL is accurate in its diagnosis, and achieves >98%
precision in identifying the faulty operation with very few
false positives even under conditions of stress. GRETEL is
lightweight and orders of magnitude faster than prior work,
sustaining a throughput of ~77 Mbps.

Keywords

Fault localization; Network monitoring; OpenStack

1. INTRODUCTION

Cloud management stacks (or CMSes) like Apache’s
CloudStack [1], VMware’s vSphere [19] and OpenStack [9]
are complex distributed systems. Current operational and
performance fault localization is both heavyweight and time
consuming, even for skilled developers/operators. Recent
faults [4,5,10-12,18] in Rackspace’s OpenStack based cloud
offering took hours and days to fix. In this paper, we focus
on the problem of fast and lightweight fault localization and
expedited root cause analysis in OpenStack.

Software and human issues are one of the major reasons
for faults arising in cloud systems [31]. Most of the prior
art [20, 21, 25-29, 33, 34, 37, 38, 41-45, 47] focuses either
on active software instrumentation, passive monitoring or
log analysis to detect and diagnose problems. All these
techniques offer low-level diagnosis, typically reporting

*Both authors contributed equally.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this
work owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions @acm.org.

CoNEXT ’16, December 12-15, 2016, Irvine, CA, USA
© 2016 ACM. ISBN 978-1-4503-4292-6/16/12...$15.00
DOI: http://dx.doi.org/10.1145/2999572.2999600

Sukrit Kalra®
IBM Research

413

Mohan Dhawan
IBM Research

errors in specific API executions or listing dependencies
on possible softwares or operations. However, all these
solutions are often slow in reporting the fault and are not
real time. For example, log analysis requires collation of
event logs and subsequent parsing to reveal the exceptions
or errors occurring at runtime; all of which takes significant
time. Further, state of the art passive monitoring systems
report an operational latency of the order of several
seconds [43]. Lastly, the above systems mostly target
operational faults, i.e., faults in API executions, and do not
consider diagnosis of performance issues.

We present the design and implementation of GRETEL—
a system for fast and lightweight fault localization of both
operational and performance issues in OpenStack. GRETEL
monitors relevant network communication and distributed
system state, and systematically analyzes the information
for fault diagnosis. Specifically, GRETEL builds a precise
sequence of APIs, which identify an operation (called the
operational fingerprint), of possible administrative tasks in
OpenStack a priori, and leverages it to detect operations
with faults. It then combines this knowledge of the faulty
operations with additional passively collected system state
to expedite fault analysis at runtime. GRETEL is novel
because it (a) detects root cause of failures (both operational
and performance) without requiring any expensive system
modification, (b) identifies the high-level administrative
operation responsible for the fault, and (c) requires no
change even on introduction of new system components.

GRETEL builds upon the key observation that the various
OpenStack components interact using a finite set of API
interfaces. Note that additions or updates to these APIs is
very infrequent, even across different OpenStack versions.
Thus, for all practical purposes, there exist a finite set
of high-level administrative operations. Furthermore, this
set of operations is effectively captured in the OpenStack
integration tests, which exercise several real world and
relevant combinations of OpenStack APIs.  GRETEL
leverages these integration tests to create, a priori, a
fingerprint for all these OpenStack operations, which build
a sequence of REST and RPC invocations for each high-
level administrative task. Thus, faults in OpenStack API
invocations not covered by the operational fingerprints will
not be diagnosed.

GRETEL localizes operational faults by analyzing relevant


http://dx.doi.org/10.1145/2999572.2999600

User Interface

HORIZON

Stores
Disk Files

Stores
Images

—
|

| Persistent
| Storage
|

v

A

e ————-

|
NEUTRON
A

GLANCE
A A A A

SWIFT
AA

Stores Disl; Files For VMs

Network Cénnectivity

A

KEYSTONE Authentication

Figure 1: OpenStack architecture.

OpenStack REST and RPC messages for API return errors
and anomalous API latencies. To do so, GRETEL leverages
the set of operational fingerprints to determine the high-
level administrative task and subsequently, the OpenStack
component that caused the fault. GRETEL then analyzes
each network interaction amongst the various components
decorated with operational and performance metadata, like
per-API latency, availability of external dependencies, and
resource utilization, for anomalies to expedite root cause
analysis of the fault. Note that abnormal resource utilization
that does not affect API latencies is not identified as a fault.

We have built a prototype of GRETEL for OpenStack
LIBERTY. GRETEL’s use of well defined patterns to
detect API error codes for operational faults, and passive
monitoring to detect API latencies, makes it compatible
with all OpenStack versions, and potentially other cloud
orchestration platforms as well. We evaluated GRETEL on
a physical setup with 3 compute nodes, using OpenStack’s
Tempest integration test suite [15] with over 1600 real world
scenarios, and exercised 470 faulty high-level administrative
tasks in our setup. We further stress tested GRETEL and
observed that for a fault frequency of 1 in 2K messages,
it can process about 50K REST/RPC events per second of
control traffic, or ~77 Mbps, which is orders of magnitude
higher than prior work [43].

This paper makes the following contributions:
(1) We present GRETEL—a system that analyzes relevant
network messages and distributed system state to localize
faults and expedite root cause analysis in OpenStack
operations, without requiring any system modifications.
GRETEL also determines the high-level administrative task
in progress that potentially led to the fault.
(2) We list scenarios (§ 3 and § 7) where existing tools are
slow or mislead even skilled developers and operators.
(3) We provide a practical design for GRETEL (§ 4 and § 5),
which leverages precise operational fingerprints to identify
the faulty operation even at high throughputs.
(4) We apply GRETEL on OpenStack (§ 6), and evaluate it
(§ 7) to demonstrate its accuracy, precision and speed, even
under conditions of stress.

2. BACKGROUND

OpenStack is a state of the art cloud management stack,
written in over 2.5 million lines of Python. It is a complex
distributed system, where each high-level administrative
task involves several cross component interactions.

414

HORIZON —°—> NOVA GLANCE
e REST
—
NEUTRON

Figure 2: Workflow for launching a new instance.

Fig. 1 shows a conceptual architecture of a basic
OpenStack deployment, where each of these services run
on different nodes with distinct IP addresses, and provide
a command-line interface (CLI) to enable access to their
APIs via REST calls. Horizon is OpenStack’s web-based
dashboard, and provides an administrative interface to other
services. Keystone is OpenStack’s identity service, which
provides authentication for all other OpenStack services.
Neutron provides virtual networks as a service between
devices managed by other OpenStack services. It allows
users to create their own networks and then link them to the
devices of their choice. Cinder is OpenStack’s block storage
service that provides persistent storage for VMs hosted on
the cloud. Nova provides a controller for orchestrating
cloud computing tasks for OpenStack, and supports a variety
of virtualization technologies, including KVM, Xen, etc.
Glance provides image services for OpenStack, such as
a catalog and a repository for VM images using REST
calls. Swift is an object/blob store, which enables creation,
modification, and retrieval of objects via REST APIs.
COMMUNICATION. OpenStack mandates that all inter-
service communication, such as those between Nova and
Neutron happen via well defined REST calls. Thus, each
OpenStack component has a corresponding HTTP client
that enables access to its REST APIs. In contrast, all
intra-service communication takes place exclusively through
RPCs. Since OpenStack services could be distributed across
several nodes, all RPC messages are routed through the
RabbitMQ broker. For example, communication between
the Nova controller and Nova agents on the compute nodes
happens via RPCs channeled through the RabbitMQ broker.
DEPENDENCIES. All data processed or operated upon
by OpenStack services is stored and managed by MySQL.
OpenStack has communication dependencies on Python-
based HTTP clients for REST calls, and Python’s oslo
messaging module for RPC invocations using RabbitMQ.
Lastly, OpenStack relies upon virtualization solutions like
KVM and Xen, and mandates that all nodes be NTP
synchronized. If any of these dependencies are not satisfied,
administrative operations in OpenStack would experience
either operational or performance faults, or both.

2.1 Example: Launch a new VM

We now briefly describe the sequence of interactions
amongst the various OpenStack component services to
launch a new VM instance from the dashboard. Fig. 2 shows



a schematic workflow for the same. For the sake of brevity,
we omit all invocations to Keystone for authentication.

(1) When an administrator initiates the launch of a VM from
the dashboard, Horizon issues an HTTP posT to Nova (using
the novaclient) to create a VM for the specified tenant.
(2) At this instant, the control migrates from the Nova
controller to the nova—compute service on the compute
node, where it initiates RPCs to build the instance.

(3) Nova then leverages the glanceclient to issue an
HTTP GET request to Glance to fetch the desired VM image
and initiates the boot process.

(4) Concurrently, Nova issues a series of GET requests to the
Neutron controller node (leveraging the neutronclient)
to determine the existing network, port and security group
bindings for the specified tenant.

(5) Nova temporarily halts the boot process, and invokes
Neutron APIs requesting it to create and attach a new port for
the VM instance. Nova sends the desired VM and network
identifiers within the POST request body to Neutron.

(6) Neutron immediately responds with the newly created
port identifier for the VM. Subsequently, Nova makes
the request to attach the port to the VM and blocks the
boot process while waiting for a callback from Neutron,
indicating that it has plumbed in the virtual interface.

(7) Upon completing port attachment to the VM, Neutron
sends out a POST to Nova using the novaclient.

(8) Nova boots the VM when all events have been received.

3. MOTIVATION

Faults may arise in OpenStack operations due to incorrect
component configuration, third party dependencies,
request/response latencies, resource exhaustion, etc. In this
paper, we consider a fault as a manifestation of deviant
system behavior, whether operational or performance or
both.  Operational faults include API error responses,
while performance faults include abnormal API latencies
that impact currently executing OpenStack operations.
Operational faults are detected using lightweight regular
expression checks, while inordinate API latencies are
detected using online anomaly detection tools. Note that we
do not consider operational or performance issues arising in
VM instances booted atop OpenStack, as faults.

FAULT LOCALIZATION. OpenStack operations involve
complex interactions amongst its distributed components.
While API errors or anomalous performance metadata are
indicative of some fault, they can often be misleading [43].
Further, in several scenarios, these fault notifications may
even be absent altogether, forcing developers/operators to
mine the system logs to determine the actual source of the
problem. Moreover, the actual root cause may be further
upstream than the component exhibiting the fault.

ROOT CAUSE ANALYSIS USING METADATA. While it
is imperative to detect what operation resulted in failure,
mere fault isolation does not reveal the exact cause of the
problem. Moreover, debugging the component involved
requires extensive domain knowledge. However, we observe
that faults afflicting OpenStack operations, typically perturb

415

some state on the physical node, atop which the OpenStack
component is running. These perturbations in system state
can often provide evidence of the root cause of failure.

Root cause analysis either through log analysis or
software instrumentation [22, 27, 29, 33, 34] often requires
complete knowledge of the entire system. Moreover, its
success depends on the intrusiveness of the implementation.
Effectiveness of log analysis is limited by the verbosity and
precision of the log level, while software instrumentation
often requires source level changes, with subsequent
compilation and deployment.

3.1 Representative Scenarios

We now illustrate the effectiveness of GRETEL’s approach
with the help of three representative scenarios. We show
how GRETEL’s root cause analysis using metadata, assists
developers and operators. We also argue why state of
the art log analysis and passive monitoring tools, such as
HANSEL [43], do not suffice for root cause analysis in
production environments on the scenarios discussed.

3.1.1 VM create

In a particular VM create scenario, with no compute nodes
available, we observed that Horizon first schedules the VM
for creation and then abruptly reflects a "No valid host was
found" error on the dashboard.

DIAGNOSIS WITH EXISTING TOOLS. Analysis of the
Nova logs with log level set to ERROR reveals no errors.
However, setting the log level to WARNING simply reflects
the same error as on the dashboard. We next used HANSEL
and observed that it identifies a chain of messages that led
to the error [43]. Specifically, HANSEL traces that the POST
request from Horizon to Nova succeeds, but the subsequent
GET to determine the status of the VM fails with the error
mentioned above. However, HANSEL’s diagnosis stops at
that stage and does not reveal the true reason for the error.
GRETEL’S DIAGNOSIS. GRETEL leverages its set of
operational fingerprints to detect that the failed operation
corresponded to a VM creation. HANSEL, in contrast, does
not indicate the operation; it merely detects the sequence of
API invocations. GRETEL, then systematically leverages the
available distributed state (as will be discussed in § 5.4) to
indicate that the nova-compute service on all the compute
hosts is down, which is the true reason for the error.

3.1.2 API bottlenecks

When creating several VM instances in parallel, we
observed significant delays in the completion of the
operation. The operation eventually succeeds but is delayed,
and thus constitutes a performance fault.

DIAGNOSIS WITH EXISTING TOOLS. Log analysis yields
no information even with TRACE level logging enabled
across all OpenStack services. Since the operation succeeds
and does not raise any operational error, HANSEL is not even
invoked. Thus, neither of the above approaches indicate any
performance issue with the operation.

GRETEL’S DIAGNOSIS. Latency anomalies are detected
for two Neutron RPCs—get_devices_details_list



and security_group_info_for_devices—and thus
reports a performance fault. It then leverages its operational
fingerprints to identify the operation as a VM instance
creation. Lastly, GRETEL checks the resource utilization
on every node in the deployment and confirms anomalous
CPU usage on the Neutron server, thereby isolating the
performance bottleneck in the operation.

3.1.3 Multiple parallel operations

Production deployment of OpenStack may have several
similar operations executing in parallel. For example, a
client could invoke multiple VM creation operations. Even
if one of those create operation fails, the administrator must
accurately pinpoint the offending operation.

DIAGNOSIS WITH EXISTING TOOLS. Log analysis could
identify the failed operation, only if log levels are set to
WARNING or below. Recall that log level set to ERROR may
not capture all failed operations. Furthermore, log analysis
is slower than other runtime solutions. In contrast, parallel
operations present the worst case scenario for HANSEL,
which would end up reporting every operation (as per its
operation stitching algorithm). Furthermore, HANSEL keeps
a buffer window of 30s to avoid out-of-order or delayed
messages, and also stitches operations on receipt of every
message, both of which significantly increase the stitching
and reporting time for faulty operations.

GRETEL’S DIAGNOSIS. GRETEL’s operational fingerprints
can quickly determine the failed operation, in spite of
the several parallel invocations. Since GRETEL invokes
operation detection only upon faults, it is not affected by any
number of successful parallel operations.

4. FAULT DETERMINATION

Precise root cause analysis of an OpenStack operation

requires that given a (sub)set of API invocations and a fault,
we must accurately identify the high-level administrative
task responsible for the fault.
MODEL. We model OpenStack as a closed system,
where all operations would continue to completion without
any operational or performance issues, unless the system
is acted upon by external factors, like software and
resource dependencies. Software dependencies involve the
set of third-party software binaries that are required for
correct execution of the OpenStack operation. Resource
dependencies include the system-level resources that could
potentially affect execution of the operation, such as CPU
load, free memory, network throughput, etc. In such a
scenario, any operational and/or performance issue can be
attributed to external factors.

Given the above operating model, root cause analysis
can be expedited by systematic analysis of external factors.
Thus, the fault determination problem reduces to correctly
determining the OpenStack operation responsible for the
fault. To do so, GRETEL leverages operational fingerprints
available a priori, and determines the closest match to a
given (sub)set of API invocations containing the fault.
COMPOSITE OPERATIONS. We consider each OpenStack

416

operation as a temporally related sequence of REST and RPC
API invocations. Like other distributed systems, OpenStack
pieces together several basic REST and RPC invocations
to build more complex administrative tasks. In a typical
OpenStack deployment, all such complex, administrative
tasks originate at the dashboard or CLI, and use relevant
REST directives to initiate it. These starting REST directives
then initiate further sequences of REST and RPC invocations
to complete the operation.

Operations from a particular OpenStack component, say
Nova, may perform similar functionality, like launching
or deleting a VM instance. All such operations leverage
similar set of APIs. If each API is denoted by a literal,
then OpenStack operations can be represented by a context
free grammar (CFG). Let S; be the operation to snapshot a
VM instance, and S, be the operation to create a volume.
Since VM snapshotting subsumes volume creation, the two
operations could be represented as shown below:

s
= O—O—0—00—0
s

We note that S, is completely subsumed by S;. Hence,

their CFG representation will have a common operation
preceded or succeeded (or both) by terminals corresponding
to additional operations, i.e., S, — DS E.
CHALLENGE. Determining the single operation
responsible for the fault, however, gets exacerbated in
OpenStack primarily because several REST and RPC APIs
may be used across multiple high-level administrative tasks.
Occurrence of simultaneous OpenStack operations makes it
challenging to segregate them.

5. GRETEL

GRETEL leverages two key observations to enable fast and
precise root cause analysis in OpenStack operations.

(1) There exist a finite set of OpenStack APIs (both REST
and RPC), and subsequently, only a finite set of high-level
administrative tasks are possible.

(2) Since OpenStack is a closed system, faults afflicting its
operations must be a result of some perturbations of the
system state on the physical node, atop which the OpenStack
component is running.

GRETEL leverages the first observation to build a precise
fingerprint of each OpenStack operation. It uses the second
observation to systematically combine (in real time) any API
faults (both operational and performance) along with per
component OpenStack activity, operational fingerprints, and
fine-grained metadata about per node resource utilization,
for fault localization and subsequent root cause analysis.

Fig. 3 shows a schematic architecture for GRETEL, which
consists of a distributed setup of monitoring agents and
a central analyzer service. GRETEL analyzes network
messages flowing across different components in OpenStack
to (a) list constituent APIs per operation, (b) gather per



Operational
State Monitoring Fingerprints

Agents l
pi . E Event ~ 'linomaly > Rt:ot s:al:lser
. ,,‘j y

Distributed State

RPC/
REST

A

Alert

R 7%

Analyzer Service

OpensStack
Nodes

Figure 3: Schematic architecture of GRETEL.

GET_OPERATIONAL_FINGERPRINT(T)
Input: T: List of traces for an operation.
Output: R: Regular expression representation of the operation.
T = SORT_BY_TRACE_LENGTH(T);
F = FILTER_NOISE(T[0]);
foreach (7 € T) do
7 = FILTER_NOISE(7);
F = GET_LONGEST_COMMON_SUBSEQUENCE(F, 7);

end
R=""
/l Tterate over all the APIs in the fingerprint.
foreach (f € F) do
if (GET_API(f) € {POST, PUT, DELETE}) then
| R=R+ GET_SYMBOL(f);
else
| R=R+ GET_SYMBOL(f) + "*";
end
end
return R;

Algorithm 1: GRETEL’s fingerprint generation.

API latency, and (c) determine API return errors, if any
(for root cause analysis). Since, GRETEL sits transparently
underneath the existing deployment, it does not affect the
safety or liveness of the distributed system.

Several third-party dependencies, like libvirt and

Python-REST clients are loaded dynamically when required
by an operation. Thus, GRETEL leverages administrative
help to list each of the dynamically loaded software
dependencies touched upon, when executing the operation
under consideration. This involves listing out the services
installed during the installation of OpenStack. In the absence
of such a list, GRETEL may be unable to pinpoint the
root cause of faults arising from these services. Other
software dependencies for OpenStack, like NTP, RabbitMQ
and MySQL, are typically standard across all operations and
components. GRETEL also works seamlessly with third-
party vendor specific plugins as long as an agent for these
plugins is provided in OpenStack.
FINGERPRINTING OPERATIONS. To fingerprint
operations, GRETEL executes OpenStack in a controlled
setting to avoid interference and determine the list of all
APIs and set of software dependencies per operation.

GRETEL analyzes relevant OpenStack network packets,
i.e., traffic corresponding to REST and RPC communication,
to determine the most precise sequence of APIs that identify
an operation (also known as the fingerprint).

Routine OpenStack operations typically involve several
messages, both REST and RPC, that do not contribute in
any meaningful way to segregate user-level operations at run
time. These messages include heartbeat and status update

417

RPCs, common REST invocations involving Keystone, and
repeat occurrences of idempotent REST actions for a specific
URI. GRETEL identifies such messages and removes them
from the operational fingerprint to improve its quality.
GRETEL further prunes the fingerprint by re-executing each
operation several times and considering only those common
APIs as the operational fingerprint that occur in each of
the successful iterations. This mechanism removes any
inadvertently captured transient REST or RPC invocations. If
the re-execution of an operation leads to a different set of
API invocations, GRETEL only considers the common set of
APIs as a fingerprint of the operation. As will be discussed
later in § 5.3.1, GRETEL prioritizes state change operations
to improve the precision of the fingerprints being generated.
Algorithm 1 briefly lists these steps.

5.1 Distributed State Monitoring

GRETEL uses monitoring agents at each OpenStack node
in the deployment to monitor (a) relevant OpenStack REST
and RPC communication, (b) resource utilization, and (c)
health of OpenStack dependencies at each node. The
network monitoring agents determine the observed network
latency between request and response for each network
message. The resource monitoring agents periodically poll
the host nodes for CPU, memory, network throughput,
storage, and disk read/write behavior. Additionally, GRETEL
maintains watchers on third-party software dependencies.

5.2 Event Receiver

The event receiver receives relevant OpenStack traffic
from every node, and forwards them to an anomaly detector
to detect operational and performance faults in operations.
Complex OpenStack tasks are essentially a combination of
simpler operations consisting of REST and RPC messages,
which must occur in a specified order to complete the task.
Thus, while messages may be interleaved across different
operations or delayed, they will not occur out of order
for a successful operation. Further, TCP connections from
network monitoring agents to GRETEL ensure that order of
messages along a TCP stream is preserved.

5.3 Anomaly Detector

The anomaly detector has two main tasks. First, it

analyzes each message to determine an anomaly. Second,
based on that anomaly, it determines the operation which
potentially contains the offending message.
DETECTING FAULTS. An API error return value signifies
an operational error, while an inordinate API latency
indicates a performance issue. Detecting operational faults
is straightforward for RESTS, where errors are indicated in
the HTTP response header. For RPCs, however, diagnosing
faulty messages requires domain-specific knowledge of
OpenStack so that error patterns are accurately identified in
the message body. To ensure that anomaly detection for
operational faults remains lightweight, GRETEL does not
parse the JSON formatted message body and simply uses
regular expressions to identify error codes in the message.

API latencies are computed based on timestamps



associated with each message, and GRETEL leverages
available online outlier detection tools to detect performance
faults. REST latencies are computed by pairing request and
response messages based on TCP connection metadata, like
IP and port, while RPC latencies are computed using IP and
message identifier that is unique to each pair. With such
lightweight message analysis, anomaly detection proceeds
at high throughput rates.

5.3.1 Operation detection

GRETEL maintains a sliding window of size « to isolate
the possible faulty OpenStack operation. We define « as

a=2x ma-x{FPmax, Prate X l}

FP,, is the size of the largest fingerprint across all
OpenStack operations, while P, is the rate of the incoming
message stream in packets per second and ¢ is the time in
seconds. The choice of a small time interval ¢ is shadowed
by F P, whereas a bigger value of ¢ ensures that the sliding
window is big enough to determine the largest operation
given a high P,,,. On detection of an anomaly, GRETEL
slides the window ahead by /2 messages and waits for the
event receiver to fill the remainder «/2 of the window. This
mechanism helps GRETEL to have a snapshot of both the
past and the future of the faulty message, and effectively
determine the operations in progress at the time of the fault.

Once the sliding window is full, GRETEL spawns a new
thread to detect the faulty operations in progress. To do so,
GRETEL first determines the set of operations that include
the offending message in their API sequences and then uses
regular expressions for these operations (derived from the
CFGs as per § 4) to detect a match in the snapshot.

If at least one such match is detected, the anomaly detector

forwards the (a) set of operations that matched the snapshot,
(b) set of messages (both REST and RPC) corresponding to
these matched operations, and (c) source and destination IPs
for all the error messages, to the root cause analysis engine.
PROBLEM. The sliding window may, however, include
APIs from multiple different operations, where every API
can potentially be part of several other administrative tasks.
Thus leveraging the entire sliding window to narrow down
the faulty operation may yield poor results.
SOLUTION. GRETEL, therefore, uses a context buffer
atop this sliding window that dynamically adjusts itself to
determine the minimum context required for identifying the
OpenStack task and prune away any noise that could affect
precise operation determination. Specifically, GRETEL
starts with a small fixed size window 8 = ¢; @ and determines
the precision 8 of matching with the operational fingerprint,
where c; is empirically determined.

We define GRETEL’s precision 6 of detecting unique
operations per fault as:

0=(N-n)/(N-1)

where N is the total number of operational fingerprints, and n
is the actual count reported by GRETEL’s operation detection
mechanism. A precision of one, i.e., =1, indicates that the

418

GET_FAILED_OPERATIONS(B, A)

Input: B: List of packets inside the context buffer.
Input: A: The offending APIL.

Output: F: The set of failed operations.

// Get the operations that contain the failed operation
O = GET_POSSIBLE_ OFFENDING_OPERATIONS(A);
O = TRUNCATE_OPERATION_FINGERPRINTS(O, A);

P=""
// Build the pattern to match the fingerprints against
foreach (b € B) do
| P=P+ GET_SYMBOL(D);
end
F={};
foreach (0 € O) do
if (REGEX_MATCH(o, P)) then
| F=Fuo;
end
end
return F;

TRUNCATE_OPERATION_FINGERPRINTS(O, A)
Input: O: Set of operations to truncate.
Input: A: The offending APIL.
Output: T: The given set of operations with truncated fingerprints.
T={}
foreach (0 € O) do
i = FIND_LAST_OCCURENCE(0, A);
T=TuUol[0:i];
end
return T;

Algorithm 2: GRETEL’s anomaly detection.

fault has been correctly narrowed down to a single operation.
A value of n>1 degrades the precision, with 6=0 for n=N.

At each iteration, GRETEL increments the context buffer
B by 6 = cra messages on either side of the fault, where c;
is empirically determined. GRETEL stops these iterations as
soon as the precision 8 drops. This also ensures that a false
negative is not returned unless one of the APIs characterizing
the operation is not contained within the sliding window.
GRETEL starts with a small value of 8 so as to minimize the
number of operations matched and then rapidly increases the
buffer size by ¢ on each side of the fault to make sure that
the whole sliding window « is covered as fast as possible.
IMPROVING PRECISION. Errors manifesting in RPC
invocations are typically communicated back to the
dashboard or CLI via REST calls. To avoid processing
duplicate snapshots, GRETEL initiates the snapshot
mechanism only when it detects an error in REST messages.
However, all REST and RPC errors present in the snapshot
are together analyzed to detect the root cause of the fault.

In case of performance faults, the operation will proceed
to completion, and the snapshot is likely to match APIs even
beyond the point of the observed fault. GRETEL, therefore,
makes use of the entire context buffer to detect a match with
the operational fingerprints. However, in case of operational
errors the entire sequence of operations may not complete
(due to the failed operation), and the snapshot may not
match any regular expression. Thus, GRETEL truncates the
regular expressions corresponding to operations that contain
the offending API till its last occurrence in the fingerprint.
The intuition is that the snapshot would match with one or
more of these truncated regular expressions, which identifies



Fingerprint for
VM create

O—O0—0—0—0—0—0

Regular
Expression E’FG
Context Buffer B|..|C|B[C|A|B|D|..|C|C|E[A|..|..[F|..]..
Faultin
message
Truncated Regular EF

Expression

E: POST/ servers|...
F: POST/ ports.json
G: POST/ os-external-events/...

A: GET/ security-groups.json
B: GET/ networks.json

C: GET/ images

D: GET/ ports.json

Figure 4: GRETEL’s operation detection mechanism. We omit RPCs for
brevity. State change APIs are marked in dark.

the potential faulty operations executing in the system.
Algorithm 2 briefly lists these steps.

GRETEL also prioritizes matching of literals in the regular
expression corresponding to state change operations, such as
REST APIs with POST, PUT and DELETE modifiers and RPCs.
Thus if the fault is in a state change operation, which is more
likely in a dynamic system, then GRETEL generates regular
expressions that are simpler and, hence, faster to match.

OpenStack is in the process of introducing a correlation
identifier [8] to tie together requests and responses from
different services pertaining to a single operation. When
fully implemented, GRETEL can exploit these correlation
identifiers to increase its precision by reducing the number
of packets against which a fingerprint is matched.
EXAMPLE. The operational fingerprint for the VM create
operation involves 7 REST and 3 RPC invocations. Fig. 4
lists this fingerprint, but omits the RPCs for brevity. If
Nova’s POST ports. json call to Neutron (node F) for
creating and attaching a port to the VM instance fails,
ie., step 6 in § 2.1, GRETEL then creates a snapshot
of the messages in its context buffer (which sits atop
the sliding window) and initiates the operation detection
procedure.  Specifically, GRETEL converts the regular
expressions corresponding to the operational fingerprints
and the snapshot into strings, where each symbol represents
a REST or RPC API, and isolates all fingerprints that contain
the symbol F. It then truncates these regular expressions till
the last seen occurrence of the symbol F. GRETEL uses these
truncated regular expressions to match against the snapshot.

Due to several concurrent operations in the system, it is
possible that some of the symbols even in the truncated
regular expression are not captured in the snapshot. Thus,
GRETEL further relaxes the notion of a fingerprint match,
such that a regular expression matches the snapshot if the
sequence of symbols corresponding to the state change
operations, i.e., RPCs and POST, PUT and DELETE REST
calls, is preserved. Fig. 4 presents the mechanism for the
detection of a faulty VM create operation. Note that even
though symbol A is missing from the context buffer, the
truncated regular expression still matches as it preserves the
order of E and F, corresponding to POST servers and POST
ports. json invocations from Nova to Neutron.

GRETEL limits itself to analyzing request and response
headers alone, and does not parse the JSON formatted

419

GET_ROOT_CAUSE(O, A)

Input: O: Operation under consideration.
Input: A: Set of all dependencies.
Output: R: Root cause.

Initialize: R = {}

¢ = Get_List_Of_Error_Messages_For_Operation(Q);
N = Get_List_Of_Nodes_For_Operation(0);
[nodes] = Get_Error_Nodes(N, ¢);

R += Find_Root_Cause([nodes], A);

if (True == Is_Empty(R)) then

[remaining_nodes] = Get_Remaining_Nodes_In_Operation(N,
[nodes]);

R += Find_Root_Cause([remaining_nodes], A);

return R;

FIND_ROOT_CAUSE(N, A)

Input: N: List of nodes.

Input: A: Set of all dependencies.

Output: faulty: Return value indicating root cause.
Initialize: faulty: {}.

// Determine anomalies in metadata

foreach (y € N) do

M = A[‘resource’][y];

S = A[‘software’][y];

foreach (p € M) do

if (True == Is_Anomalous(y, p)) then
faulty += p;

end

foreach (7 € S) do

if (True == Is_S/W_Dependency(S, ¥, n) then
sw = Get_Offending_S/W(S, ¢, n);
faulty += sw;

end
end

return faulty;

Algorithm 3: GRETEL’s root cause analysis.

payload for extracting rich operation metadata. As a result,
it may miss out on matching certain operations that change
their fingerprints according to the data in the payload. While
GRETEL should leverage payload for more precise operation
tagging, we leave this improvement for future work.

5.4 Root Cause Analysis

GRETEL leverages (a) the error metadata forwarded by the
anomaly detector, and (b) the knowledge of the distributed
state obtained from polling individual nodes, within the
duration of events captured in the context buffer (as passed
on by the anomaly detector) to detect the root cause.

Algorithm 3 briefly lists the steps. Specifically, GRETEL
analyzes all operations containing the offending error
message (as forwarded by the anomaly detector), and
uses the operational fingerprints to determine the set of
nodes in the OpenStack deployment that correspond to
the particular high-level administrative task. = GRETEL
focuses on the source and destination nodes (as passed on
by the anomaly detector for the offending message), and
determines anomalous resource or software usage that could
potentially affect the operation. In case no anomalous
values are detected on the nodes analyzed, GRETEL expands
its search to other possible nodes that participate in the
operation (as per the fingerprint). This is imperative since
the root cause of the error in the operations may manifest
upstream from the actual node where the fault arose. We



further describe, in detail, the utility of this approach in § 7.2.
IMPROVING PRECISION. OpenStack deployments
typically install each of its component services on separate
nodes for scalability and fault isolation. GRETEL leverages
this observation to further improve the accuracy of its
root cause detection. This distinction enables GRETEL to
accurately track API level performance metadata per node,
for every operation. Note that even if the component
services share IP addresses, GRETEL would only require
the various OpenStack HTTP clients to report the source
service as an HTTP request header to identify the start of
an operation. No further changes would be needed in the
core deployment. By annotating each packet with the service
name, GRETEL remains unaffected by hardware failures or
upgrades that may typically change low level information
about the deployment. In other words, this small change will
make GRETEL oblivious to the underlying deployment.

6. IMPLEMENTATION

We have implemented a prototype of GRETEL for
OpenStack LIBERTY based on the design described in § 4
and § 5. We built GRETEL’s distributed state monitoring
infrastructure using Bro [2, 39] and collectd [7].
We augmented Bro with a custom protocol parser for
the RabbitMQ messaging protocol (60 LOC in C++),
and leveraged Python-bindings for Broccoli [3] (Bro’s
communication library) to send events from the OpenStack
nodes to GRETEL’s analyzer service, written in ~1600
LOC in Python. We additionally installed and configured
collectd on all OpenStack nodes to capture system
metrics and send them to the analyzer service. We now
briefly describe a few salient features of our implementation.
(1) System state monitoring. GRETEL performs a
comprehensive check about the status of the dependencies
and the resources utilized. Specifically, GRETEL analyzes
collectd generated snapshots of the system resource
usage. Additionally, GRETEL also has watchers to detect
TCP-level reachability to MySQL, RabbitMQ and NTP
servers, and other nodes in the deployment.

(2) Anomaly detection. = GRETEL detects operational
faults by analyzing the error packets, which involves
lightweight regular expression checks over the message
payload. However, to determine performance anomalies,
GRETEL leverages Python-bindings for the R tsoutliers
package [16]. Specifically, GRETEL uses the LS (Level
Shift) mode in the t soutliers to detect the outliers in the
continuous stream of API latencies and resource utilization
received at the analyzer. The LS mode ensures that GRETEL
adapts to the underlying system changes and does not report
many false alarms. Note that outlier detection in GRETEL is
pluggable and administrators can leverage any sophisticated
detection mechanism for the same.

OPTIMIZATIONS. GRETEL detects currently executing
OpenStack operations using regular expressions. Since
the number of unique OpenStack APIs is 643, we use
Unicode encoding to assign a symbol to each APL
However, matching hundreds of regular expressions against

420

a Unicode-encoded message snapshot is slow. Thus,
GRETEL removes symbols corresponding to RPC messages
to speed up operation detection. The intuition here is that
an RPC error message must also be captured in the REST
message(s) to the dashboard or CLI. To further speed up
operation detection, GRETEL offloads all regular expression
matching to a Perl process.

Lastly, GRETEL leverages a dual buffer to receive and
process the incoming REST and RPC messages. It speeds
up the snapshotting process using a combination of two
pointers in the dual buffer separated by @ messages, where
a is the size of the sliding window. Whenever an error
is encountered in the message stream, GRETEL freezes the
messages between these two pointers to create a snapshot.

7. EVALUATION

We now present an evaluation of GRETEL. In § 7.1,

we characterize OpenStack operations and build their
fingerprints, which can be used to identify operations at
high throughput rates. In § 7.2, we present case studies
highlighting GRETEL’s utility in root cause analysis for
OpenStack operations. In § 7.3, we use Tempest to evaluate
GRETEL for its precision in uniquely identifying the possible
operations for every fault introduced because there exists
no publicly available trace, representative of real OpenStack
workloads. Lastly, in § 7.4, we measure GRETEL’s network
and system overhead under conditions of stress.
EXPERIMENTAL SETUP. Our physical testbed consists
of 7 servers (including 3 compute nodes) connected to 14
switches (IBM RackSwitch G8264) arranged in a three-
tiered design with 8 edge, 4 aggregate, and 2 core switches.
All servers are IBM x3650 M3 machines having 2 Intel Xeon
x5675 CPUs with 6 cores each (12 cores in total) at 3.07
GHz, and 128 GB of RAM, running 64-bit Ubuntu v14.04.
We installed OpenStack LIBERTY with each component on
a different server. The inter-component OpenStack traffic
and Bro-to-analyzer service communication was isolated to
avoid any performance penalties. collectd frequency to
poll for resource utilization was set to 1s.
EMPIRICAL DETERMINATION OF THRESHOLDS. We
empirically determine the values of the thresholds used by
the anomaly detector. We use Bro to determine the value
of P4, Which is the only dynamic parameter affecting the
value of @ and in turn 8. As will be shown later in § 7.1,
the maximum fingerprint size FP,,, was 384 across all
OpenStack operations. P, for our deployment with 400
concurrent operations was observed to be ~150 pps and we
chose the value of parameter ¢ as 1s. Thus, we set the sliding
window size @ to be 768 (recall § 5.3.1). We empirically
determined c; as 0.1 and ¢, as 0.04 and thus, the start value
of the context buffer 8 was set at 80, while ¢ was set at 30.

7.1 OpenStack Characterization

We characterize OpenStack by developing fingerprints
for all possible operations. Specifically, we leveraged
OpenStack’s Tempest integration test suite [15], which
includes an exhaustive set of tests representative of actual



Unique APIs Events Avg. Fingerprint
Category | Tests RPC | REST | RPC REST | w/ RPC | w/o RPC
Compute | 517 | 61 195| 77.2K| 87.8K 100 56
Image 55| 10 38 0.9K 4.8K 18 15
Network 251 24 70| 20.2K| 18.5K 31 16
Storage 84 11 40 3.5K 6.2K 17 15
Misc. 293 | 11 20 9.1K| 14.1K 16 11
Total 1200 - -| 110.9K | 131.4K - -

Table 1: Characterization of the Tempest test suite.

administrative tasks in OpenStack. ~We executed each
Tempest test (applicable for our setup) in isolation and
monitored the sequence of REST and RPC APIs reported by
GRETEL, along with the software dependencies required at
every node in the OpenStack deployment (per § 5.1).

WHY TEMPEST? Tempest has an extensive battery of
tests for OpenStack API validation, real-world scenarios
testing the integration between different OpenStack services,
and other specific tests useful in validating an OpenStack
deployment. Further, Tempest is designed to run against
any OpenStack deployment, irrespective of the scale,
the environment setting or the underlying services that
the deployment uses. Since Tempest can run on large
deployments, it provisions running its test cases in parallel
to stress the OpenStack deployment close to the degree that
it would endure during peak usage cycles.

All tests that Tempest runs and validates are tasks
that a tenant or administrator can execute in a real-
world setting via OpenStack APIs. Further, Tempest’s
functional and integration tests are complex operations,
derived from actual, real-world use cases occurring daily in
fully operational OpenStack deployments. Typically, these
scenarios involve a series of steps for testing OpenStack
functionality spanning single or multiple nodes, where
complicated state requiring multiple services is set up,
exercised, and torn down.

GRETEL’s fingerprint generation is an offline process

since these fingerprints are independent of the scale of the
deployment. Hence, GRETEL does not require learning
atop production environments and can be trained on test
environments. Unlike operational anomalies which leverage
these fingerprints generated offline, performance anomaly
detection is an online process and makes use of mechanisms
described earlier in § 5.3 and § 6.
TEST SUITE CHARACTERIZATION. The latest Tempest
test suite has 1645 tests of which 1200 executed successfully
on our setup. The rest were not applicable for our setup
and thus skipped by the test harness. We further classified
these tests based on the nature of the operations. All
tests that include creation, migration, etc., of instances,
were classified under Compute. Tests that operate upon
network configuration, ports, routers, etc., were classified
under Network, while those involving VM images were
categorized under Image. Tests operating upon VM storage
were grouped under Storage. All other tests, such as those
involving management tasks, like querying for key pairs,
availability zones, etc., were grouped as Miscellaneous.

We executed each of the applicable 1200 Tempest tests
in isolation using GRETEL, and report our findings for each

421

1 L
0.9
0.8
0.7
w06
[=}
O 05+
041 w/ Network
03 r w/ Image
0.2 w/ Storage
01 f w/ Misc
0 = L L L
0 0.05 0.1 0.15 0.2

Fingerprint Overlap (%)

Figure 5: CDF for Compute operations.

category as described above in Table 1. TESTS indicates
the count of tests executed per category. UNIQUE APIS
indicate the number of unique RESTs and RPCs observed
across all tests in the corresponding category. The REST and
RPC events column indicate the network messages processed
by GRETEL. These messages also include periodic updates,
heartbeats, etc., which GRETEL prunes. The last column
indicates the average fingerprint size for each category, both
with and without RPCs.

We observe some overlap across operations within the

same category. This overlap stems from the fact that
operations belonging to the same category tend to leverage a
small set of APIs provided by a single OpenStack service.
However, GRETEL’s fingerprints are substantially unique
across operations of different categories. We select 70
representative Compute operations and plot their overlap
across all other categories in Fig. 5. We note that ~90% of
the representative Compute operations have <15% overlap
across all categories.
LIMITATION. While Tempest aims to be exhaustive in
its API coverage, we note that it is not sufficient to
fingerprint ‘all’ possible OpenStack operations. Specifically,
OpenStack components expose a total of 643 public APIs
through their REST clients and CLIs. However, our
characterization reveals that Tempest tests utilizes only a
subset of these APIs across all its operations. Therefore, our
characterization must be augmented to cover scenarios not
included in the Tempest test suite.

7.2 Accuracy

We now present representative scenarios highlighting
GRETEL’s utility in root cause analysis of OpenStack
operations. While the scenarios presented here are far
from being exhaustive, they are indicative of (a) typical
OpenStack operations and the nature of cross-component
communications involved, and (b) GRETEL’s effectiveness
in isolating and identifying the root cause of faults.

7.2.1 Failed image uploads

We observed that uploading new VM images failed
with Horizon showing a "Unable to create new image"
error.  Analysis of Glance logs revealed no entries.
However, GRETEL discovered a REST 413 "Request Entity
Too Large" error issued from Glance to Horizon for the
PUT method of the v2/images/<UUID>/file API and



Figure 6: Anomalous latency for Neutron’s GET /ports. json.

narrowed down the number of possible operations to just
one, which was the Image upload operation. Subsequently,
GRETEL’Ss root cause analysis engine detected a resource
issue on the Glance server, specifically low free disk space.
After clearing up space and restarting the Glance service,
subsequent image upload operations succeeded.

7.2.2  Neutron API latency increase

VM instance creation is one of the most common and
significant operation in OpenStack, and any increase in
its latency will have an adverse effect on overall system
performance. During a run of 400 concurrent operations,
we observed an increase in the latency of Neutron’s
v2.0/ports.json API as shown in Fig. 6. The original
and adjusted time series are plotted in gray and blue
respectively, while the level shift corresponding to the
anomalous behavior is marked in red.

GRETEL was able to recognize this anomalous API
latency increase and initiated the root cause analysis, which
focuses on both Neutron and Nova controller nodes to
determine the reason for the performance fault. GRETEL
detects no issues with Nova, but observes a surge in
the CPU utilization on the Neutron server during the
execution of the operation. GRETEL attributed the increased
latency to the high CPU usage. Other Neutron APIs like
v2.0/quotas/{ID} and v2.0/networks. json that are
part of the same VM create operation also experienced
similar API latency increase.

7.2.3  Linux bridge agent failure

Neutron’s layer 2 Linux bridge agent plugin configures
a Linux bridge to realize the various Neutron abstractions.
This plugin is deployed on all compute nodes and in event of
its failure, the VM creation operation fails since it is not able
to provide a network to the newly created instance. When
launching an instance from the dashboard, we observed that
Horizon reported a "No valid host was found. There are
not enough hosts available." error. However, a subsequent
listing of Nova’s services showed that there was a compute
node enabled and up and running. There were no errors on
the Nova compute host, while the controller’s logs showed
the same error as the one on the Horizon dashboard.

GRETEL characterized this operation as a failed VM
create operation and started the root cause analysis, which
found no resource related anomalies on any of the servers
involved in the operation. Subsequently, GRETEL checked

422

for failures in software dependencies and found that the
neutron-plugin-linuxbridge-agent on the compute
host had crashed and reported that as a possible reason
for the failure. Manual debugging revealed service mis-
configuration, and fixing it completed the operation.

7.2.4  NTP failure

OpenStack requires the presence of NTP agents on each
server that is part of the deployment to properly synchronize
services amongst nodes. While doing a cinder list on
the controller node, we noticed that the operation failed with
the error "Unable to establish connection to Keystone". Log
analysis found no error logs on the Keystone service and
Cinder logs showed a "Timeout is too large" error; none of
which were useful in identifying the root cause.

GRETEL identified a 401 Unauthorized error being
relayed from Keystone to Cinder. Our root cause analysis
engine checked the node hosting Keystone for both resource
anomalies and software issues and found none. The engine
then checked for resource related issues on the Cinder
node and found no anomalies, but checking the software
dependencies listed out the stopped NTP agent as a possible
cause of the issue, and upon restarting the NTP agent on the
host, the cinder client started working.

7.3 Precision

PARALLEL WORKLOAD. We evaluate GRETEL’s precision
in a controlled setting with several parallel operations.
We randomly select non-faulty Tempest tests proportional
to their distribution in the test suite, and execute them
concurrently with a specified number of faulty test cases.
These faulty operations included erroneous APIs only from
the Compute and Network category, which form over
80% of all REST API invocations in the test suite (per
Table 1). We ignore all performance faults for these tests,
and evaluate them separately. Since each test spans several
distinct operations, this setup is representative of real world,
parallel operations, and is particularly challenging for our
characterization that considered only individual operations
executing in isolation.

We measure GRETEL'’s precision with varying number of
parallel tests from 100 to 400 in increments of 100. For each
scenario, we varied the number of operational faults injected
(1, 4, 8 and 16) and plot the precision in Fig. 7a. Each
fault additionally invokes operation detection against entire
set of the 1200 fingerprints (corresponding to all OpenStack
operations) in our characterization set.

In all scenarios, GRETEL reports a precision of >98%.
We also observe that as we increase the load and the faults
injected, GRETEL’s precision increases only marginally. We
attribute this small increase in precision to the availability of
more operational context, which increases due to increase in
size of the context buffer (8). Note that an increase in the
number of parallel operations increases the number of inter-
leavings between subsequent calls of the same operation.
Thus, GRETEL increases the size of the context buffer (5),
which forces a more precise match with the truncated regular
expressions for the operational fingerprints (per § 5.3.1).



920

80

! /—\-1—»(
0.99

With API Error XX
Contextng ops E

Contextygg ops FT
Contextygg Ops N

W/ API Error EXZ%3
Context w/o RPC §EEEE
Context w/ RPC

R R

XKD

s

%

# Operations Matched

R

20 ‘

10 %
0 o]

o - il

g 70 [~ Contextygg ops
£ 60r
5 / g
2 b33 © 50
S 098 £ 40
1 Error =—@=— E’_ 30
0.97 | 4Erors == 2 20
8 Errors 10l
16 Errors
0.96 . . - - 0 =
100 200 300 400

# Parallel Operations

(a) Precision for parallel workload.

OP1 OP2 OP3 OP4 OP5 OP6 OP7 OP8
Faulty Operation

(b) Operations matched w/ increasing context.

OP1 OP2 OP3 OP4 OP5 OP6 OP7 OP8
Faulty Operation

(¢) Operations matched w/ and w/o RPCs.

Figure 7: GRETEL’s precision.

(1) False positives: A false positive for GRETEL occurs
when it cannot narrow down the sequence of messages in
its context buffer to just a single OpenStack operation. This
is possible since majority of OpenStack operations involve
cross-service interactions (e.g VM create, VM migrate etc.).
Further, as discussed in § 7.1, GRETEL’s fingerprints are
substantially unique for composite operations and hence, a
larger snapshot results in lower number of false positives.
Fig. 7b plots the variation in operations matched when
executing 100, 200, 300 and 400 concurrent operations
along with 8 faulty operations. “With API error” indicates
the number of operations matched based on just the
REST error API, without using the snapshot from the
context buffer. We note that as the parallelism grows,
GRETEL’s precision improves marginally. We attribute
this improvement primarily to an increase in the context
buffer, whose size increases with increased parallelism in the
system to improve precision (per § 5.3.1).

(2) Pruning RPCs in fingerprint: As a performance
optimization, GRETEL prunes the operational fingerprint to
match upon only the set of REST APIs in the operation
(recall § 6). We executed 100 tests concurrently along with
8 injected faulty operations. Fig. 7c plots the number of
operations matched with the fingerprint with and without
RPCs included. ‘With API error’ indicates the count of
operations matched on just the REST error API, without
using the snapshot from the context buffer. We observe that
the use of RPCs only marginally improves precision for some
scenarios, which is possible due to a richer context available
for matching with the operational fingerprints.

(3) Multiple parallel faults: We measure the number of
operations matched when executing 16 parallel instances of
the same faulty operation, along with varying number of
concurrently executing tests from 100 to 400 in increments
of 100. Fig. 8a plots the results. We observe that the average
number of operations with which the fault matches decreases
steadily as the concurrency increases. This is primarily due
to the increase in the context buffer, where a larger context
buffer size helps to match the operational fingerprint and
subsequently improve precision (per § 5.3.1).

(4) Performance faults: We determine the performance
faults reported for anomalous API latencies observed for
Glance’s v2/<ID>/images REST API when executing 200

423

Tempest operations concurrently, which took ~20 mins to
complete. The v2/<ID>/images API is one of the most
frequently invoked APIs by OpenStack services to retrieve
metadata for the specified image ID. We used tc [13] to
inject a 50 ms latency in all communication to/from the
Glance server for 10 mins, starting at the 5 min mark.

Fig. 8b plots the original (in gray) and adjusted time series
(in blue), and the level shift (in red) corresponding to the
anomalous behavior. We observe that GRETEL raises 18
alarms during the 10 min duration and is also corroborated
by the level shifts reported during the corresponding time
period. Note that the adaptive nature of LS raises alarms
only when there is a sudden spike in the time series values.
LS does not raise alerts even if latency variations are smaller
than the initial observed spike.

7.4 Performance

7.4.1 Throughput

Since the 1200 tests chosen from the Tempest test suite
may not stress our deployment, we perform a synthetic
evaluation of GRETEL’s fault testing mechanism at scale
using a large number of concurrent operations. We
measure the steady throughput achieved by GRETEL for
fault frequencies of 1 fault per 100, 500, 1K, 1.5K and 2K
messages. We use tcpreplay [14] to generate RPC events
at varying rates from the Bro agents, and plot the results
in Fig. 8c. We observe that for 1 fault per 100 messages,
GRETEL reports a throughput of ~7.5 Mbps. On reducing
the error rate to 1 fault per 1K messages, GRETEL processes
messages at near line rates. Thus, GRETEL’s snapshotting
mechanism is not a bottleneck.

We limit the maximum packets per second (pps) rate
for tcpreplay to 50K, since higher pps results in several
packet retries, which affect throughput calculations. Further,
GRETEL took a maximum duration of <2 seconds to report
the faults even with 400 concurrent operations. In contrast,
HANSEL [43] achieves a peak throughput of only 1.6K REST
messages per second, and introduces a latency of 30 seconds
to account for delayed or out-of-order messages.

7.4.2  System Overhead

We ran 100 Tempest tests in parallel, which took ~6 mins



25

20

TN

| WW.%%*MMWWWMQJ‘WW‘Wmmww

{0 80
70
60
50

Fault/100 Msg

Fault/500 Msg
Fault/1000 Msg —e— —%
Fault/1500 Msg ==
Fault/2000 Msg

# Operations Matched

S—

200 300
# Parallel Operations

100 400

(a) Operations matched w/ 16 identical
concurrent operations.

(b) Performance faults observed w/ parallel workload.

40
30
20
10

w

Gretel Throughput (Mbps)

10 20 30 40 50 60 70 80
Received Throughput (Mbps)

(¢) GRETEL’s throughput.

Figure 8: GRETEL’s evaluation.

to complete, and monitored all nodes for CPU and memory
consumption by the analyzer and the Bro agents. Note,
we disabled our watchers for passive state monitoring for
this experiment. The analyzer reported peak CPU usage
of ~4.26% and memory consumption of ~123 MB. We
observed that peak CPU usage for Bro-based monitoring
agents was <12.38%, while their memory usage was ~1 GB.

8. LIMITATIONS

(1) GRETEL’s accuracy is contingent upon the message
context available in the sliding window used to determine
the faulty operation. A small snapshot may include only a
partial fingerprint resulting in no operation match.

(2) GRETEL requires the presence of a REST or RPC error
message for detection of faults, and may miss out on faulty
operations that do not generate any tangible operational or
performance errors, like a stuck VM create

(3) GRETEL leverages regular expression checks to detect
operational faults. Faults that do not match any regular
expression may be potentially missed. For performance
faults, GRETEL relies upon its watchers. Thus, transient
changes resulting in performance issues, may be missed if
not polled at a finer granularity.

(4) GRETEL’s use of fingerprints for all OpenStack
operation governs the precision of operation detection.
Thus, more number of test scenarios would improve the
fingerprint. In its present form, GRETEL may miss on
operations that are not captured in the Tempest test suite,
i.e., it is predicated on the completeness of the test suite.

(5) GRETEL cannot detect root cause of errors that manifest
due to interfering operations, such as those that have causal
dependencies upon each other. This limitation is, however,
present across most prior art, including log analysis systems.
(6) GRETEL does not handle asynchronous calls that occur
in the middle of an operation and lead to a branched
fingerprint. Currently, GRETEL’s re-execution of operations
removes truly asynchronous APIs from the fingerprint.

(7) Enhancements to OpenStack or its APIs require building
additional fingerprints for the newly introduced operations.
(8) GRETEL currently requires manual input to determine
software dependencies for each operation, and the accuracy
of its root cause analysis is contingent upon the correctness
of the characterization provided.

424

9. RELATED WORK

9.1 Software instrumentation

Causal dependencies can be derived by comprehensively
instrumenting all software, including any middleware, for
communication, scheduling, and synchronization to record
interaction amongst the various different components in
the distributed system. Such systems [21, 25-29, 33, 37,
41, 42, 44, 45, 47] often integrate end-to-end tracing of
all component interaction within the distributed system
operations themselves.

X-trace [29], BorderPatrol [37], Pip [41], Webmon [30],
Pinpoint [27], vPath [45] and Ju er al. [33], actively
instrument the network stream along the software stack
to uniquely tag all network operations. Popular industry
implementations, like Zipkin [17] Dapper [44], and
Htrace [6], also take a similar approach towards end-to-
end tracing. In contrast, X-ray [21] instruments application
binaries and uses dynamic information flow tracking to
estimate the root cause of performance issues.

While being useful, the above systems have
implementation and deployment limitations. Not only
do they require exhaustive knowledge of the entire system,
their success primarily depends on the intrusiveness of the
implementation. Further, whole system instrumentation
to track faults, requires modification of the entire source
code, recompilation and subsequent deployment, which
may not be possible in some deployments. Thus, GRETEL,
unlike prior work, does not rely on any instrumentation.
Instead, GRETEL employs a combination of precise
operational fingerprints of OpenStack operations and
passive monitoring of resources and dependencies to
identify root cause of operational and performance issues.

9.2 Passive monitoring

GRETEL, like prior work [20, 34,38, 43], utilizes passive
monitoring of the deployment (without any knowledge
of node internals or message semantics) to infer causal
sequences of actions leading to faults. However, unlike
prior work, GRETEL employs a learning phase to build a
precise operational fingerprint of OpenStack operations, and
combines it with statistical inferences from system metrics
to determine the root cause of faults.

Sherlock [22], SCORE [36], NetMedic [34], dFault [40],



FChain [38] and HANSEL [43] exploit dependency graphs
representing the complex chain of dependencies that exists
in services, analyze symptoms from the network, and output
a candidate set of root causes for the faults. Even though
GRETEL requires a training phase to build its operational
fingerprints, it operates at high throughput rates and reports
no lag or loss of packets (per § 7.4.1).

COMPARISON WITH HANSEL. GRETEL is similar in
spirit to HANSEL [43]. However, there exists significant
differences between the two systems, as described below:
(1) GRETEL detects both operational and performance
anomalies and provides a potential root cause of such
errors. In contrast, HANSEL merely detects operational
faults without providing a possible reason for the error.

(2) GRETEL classifies a faulty operation as a high level
administrative task. In contrast, HANSEL merely provides
the administrator with a low-level sequence of operations for
each task that failed.

(3) GRETEL processes messages as they arrive and requires
no buffering. Thus, it provides a more scalable design as
compared to HANSEL, which employs time buckets to avoid
any dropped packets.

(4) GRETEL triggers its error reporting only when it detects
a fault. HANSEL, in contrast, leverages a heavy duty
stitching logic that is triggered on every message, which
coupled with the time buckets, increases its error reporting
latency to almost 30s for zero dropped packets.

(5) HANSEL analyzes the request and response payloads
to extract meaningful identifiers. = However, common
identifiers, like tenant ID, etc., may cause a faulty operation
to link with several successful operations. In contrast,
GRETEL is precise and detects only the faulty operation.

(6) GRETEL may fail to report the faulty operation if the
sequence of packets fails to match a fingerprint. On the other
hand, HANSEL does not suffer from this limitation and will
always a report a chain of events leading to the fault.

(7) GRETEL does not handle failures in asynchronous calls
in OpenStack operations. In contrast, HANSEL can still
provide a chain of events leading to the fault.

425

9.3 Log analysis

Tracing systems [24, 35,46, 48, 49] leverage log analysis
to determine causal relationships among events. Such tools,
however, are limited by the verbosity of the logs, and employ
probabilistic data mining approaches.

Magpie [23] and ETE [32] rely on the distributed system’s
event semantics, and use temporal join-schemas on custom
log messages. However, effectiveness of log analysis is
limited by the comprehensiveness of the system logs and
their debug level. Moreover, production systems typically
have very lightweight logging enabled. Thus, GRETEL does
not depend on log analysis, but can augment its root cause
analysis using logs, if available.

Log analysis approaches induce a delay since
determination of causal relations takes time until all
the logs are collected and analyzed. In contrast, GRETEL
can operate at high network speeds.

10. CONCLUSION

We present GRETEL, a fast fault detection and diagnosis
system for OpenStack, which leverages non-intrusive system
monitoring to systematically combine different system states
and identify root cause of operational and performance faults
in OpenStack. GRETEL uses unique operation fingerprints
to quickly identify faulty operations at runtime. GRETEL is
lightweight and precise even under stress.

11. ACKNOWLEDGEMENT

We thank our shepherd, Nedeljko Vasic, and Vijay Mann
and the anonymous reviewers for their valuable comments.



12. REFERENCES

[1] Apache CloudStack. https://goo.gl/1S3K9W.
[2] Bro. https://www.bro.org/.
[3] Broccoli. https://goo.gl/4NUJF1.
[4] Cloud block storage issues. https://goo.gl/E6BPXG.
[5] Cloud servers issues. https://goo.gl/yg9gFB.
[6] Cloudera HTrace. https://goo.gl/Pz31Qu.
[7] collectd. https://collectd.org/.
[8] Correlation id in python-glanceclient.
https://goo.gl/UyFDOr.
[9] OpenStack. https://www.openstack.org/.
[10] Rackspace Issue 1. https://goo.gl/2tdjHB.
[11] Rackspace Issue 2. https://goo.gl/CngSTL.
[12] Rackspace Issue 3. https://goo.gl/JVVpXO0.
[13] tc: Traffic Control in the Linux kernel.
http://goo.gl/£8YDaH.
[14] Tcpreplay. http://tcpreplay.synfin.net/.
[15] Tempest. http://goo.gl/O0ZiXTV.
[16] tsoutliers. https://goo.gl/aVxsSd.
[17] Twitter Zipkin. https://goo.gl/bHtUKc.
[18] VM build intermittent failure.
https://goo.gl/s3VP37.
[19] VMware vSphere. http://goo.gl/kNAROE.
[20] M. K. Aguilera et al. Performance Debugging for Distributed
Systems of Black Boxes. In SOSP’13.
M. Attariyan et al. X-ray: Automating Root-cause Diagnosis
of Performance Anomalies in Production Software. In
OSDI’12.
P. Bahl et al. Towards Highly Reliable Enterprise Network
Services via Inference of Multi-level Dependencies. In
SIGCOMM’07.
P. Barham et al. Using Magpie for Request Extraction and
Workload Modelling. In OSDI’04.
L. Bitincka et al. Optimizing Data Analysis with a
Semi-structured Time Series Database. In SLAML’10.
[25] A. Chanda et al. Whodunit: Transactional Profiling for
Multi-tier Applications. In SOSP’07.
[26] M. Y. Chen et al. Path-based Failure and Evolution
Management. In NSDI'04.
[27] M. Y. Chen et al. Pinpoint: Problem Determination in Large,
Dynamic Internet Services. In DSN’02.
[28] R. Fonseca et al. Experiences with Tracing Causality in
Networked Services. In INM/WREN’10.

[21]

[22]

[23]

[24]

426

[29] R. Fonseca et al. X-trace: A Pervasive Network Tracing
Framework. In NSDI’07.

[30] T. Gschwind et al. Webmon: A Performance Profiler for Web
Transactions. In WECWIS’02.

[31] H. S. Gunawi et al. What Bugs Live in the Cloud?: A Study
of 3000+ Issues in Cloud Systems. In SOCC’14.

[32] J. L. Hellerstein et al. ETE: A Customizable Approach to
Measuring End-to-end Response Times and their
Components in Distributed Systems. In /CDCS’99.

[33] X.Ju et al. On Fault Resilience of OpenStack. In SOCC’13.

[34] S. Kandula et al. Detailed Diagnosis in Enterprise Networks.
In SIGCOMM’09.

[35] S.P. Kavulya et al. Draco: Statistical Diagnosis of Chronic
Problems in Distributed Systems. In DSN’12.

[36] R. R. Kompella et al. IP Fault Localization via Risk
Modeling. In NSDI’05.

[37] E. Koskinen et al. BorderPatrol: Isolating Events for
Black-box Tracing. In Eurosys’08.

[38] H. Nguyen et al. FChain: Toward Black-box Online Fault
Localization for Cloud Systems. In ICDCS’13.

[39] V. Paxson. Bro: A System for Detecting Network Intruders
in Real-time. In USENIX Security’98.

[40] P. Prakash et al. dFault: Fault Localization in Large-scale
Peer-to-peer Systems. In Middleware’10.

[41] P. Reynolds et al. Pip: Detecting the Unexpected in
Distributed Systems. In NSDI’06.

[42] R.R. Sambasivan et al. Diagnosing Performance Changes by
Comparing Request Flows. In NSDI'11.

[43] D. Sharma et al. HANSEL: Diagnosing Faults in OpenStack.
In CoNEXT’15.

[44] B. H. Sigelman et al. Dapper: A Large-scale Distributed
Systems Tracing Infrastructure. Google Research, 2010.

[45] B. C. Tak et al. vPath: Precise Discovery of Request
Processing Paths from Black-Box Observations of Thread
and Network Activities. In ATC’09.

[46] J. Tan et al. Visual, Log-based Causal Tracing for
Performance Debugging of MapReduce Systems. In
ICDCS’10.

[47] E. Thereska et al. Stardust: Tracking Activity in a
Distributed Storage System. In SIGMETRICS 06.

[48] W. Xu et al. Detecting Large-scale System Problems by
Mining Console Logs. In SOSP’09.

[49] D. Yuan et al. SherLog: Error Diagnosis by Connecting
Clues from Run-time Logs. In ASPLOS’ 10.


https://goo.gl/1S3K9W
https://www.bro.org/
https://goo.gl/4NUdFi
https://goo.gl/E6BPxG
https://goo.gl/yg9gFB
https://goo.gl/Pz3lQu
https://collectd.org/
https://goo.gl/UyFDOr
https://www.openstack.org/
https://goo.gl/2tdjHB
https://goo.gl/CnqSTl
https://goo.gl/JVVpX0
http://goo.gl/f8YDaH
http://tcpreplay.synfin.net/
http://goo.gl/OZiXTV
https://goo.gl/aVxsSJ
https://goo.gl/bHtUKc
https://goo.gl/s3VP3j
http://goo.gl/kNAR0f

	1 Introduction
	2 Background
	2.1 Example: Launch a new VM

	3 Motivation
	3.1 Representative Scenarios
	3.1.1 VM create
	3.1.2 API bottlenecks
	3.1.3 Multiple parallel operations


	4 Fault Determination
	5 Gretel
	5.1 Distributed State Monitoring
	5.2 Event Receiver
	5.3 Anomaly Detector
	5.3.1 Operation detection

	5.4 Root Cause Analysis

	6 Implementation
	7 Evaluation
	7.1 OpenStack Characterization
	7.2 Accuracy
	7.2.1 Failed image uploads
	7.2.2 Neutron API latency increase
	7.2.3 Linux bridge agent failure
	7.2.4 NTP failure

	7.3 Precision
	7.4 Performance
	7.4.1 Throughput
	7.4.2 System Overhead


	8 Limitations
	9 Related Work
	9.1 Software instrumentation
	9.2 Passive monitoring
	9.3 Log analysis

	10 Conclusion
	11 Acknowledgement
	12 References



