
Blockchain-based Real-time Cheat Prevention and Robustness
for Multi-player Online Games

Sukrit Kalra
∗

UC Berkeley

Rishabh Sanghi
†

IBM

Mohan Dhawan

IBM Research

ABSTRACT

The gaming industry is affected by two key issues—cheating and

DDoS attacks against game servers. In this paper, we aim to present

a novel yet concrete application of the blockchain technology to

address the seemingly disparate problems. Our approach uses

blockchain to manage definitive game state and exploits peer

consensus on every player action to track modifications to tangible

player assets. While a key impediment to adopting blockchain for

real-time systems is its high per-operation latency, our approach

leverages several optimizations to enable real-time prevention of a

large class of cheats where the reported client state is inconsistent

with the observed state at the server. Further, blockchain-based

games leverage the robust peer-to-peer architecture to successfully

defend against DDoS attacks.

Our strategy enables flexibility to customize games with

minimum modifications to game clients by porting server-side

logic to smart contracts that execute atop peers. We evaluate our

approach on a recent port of the multi-player game Doom. Our

prototype can scale to client tickrates matched by modern games,

and prevent cheats in <150ms for 32 peers deployed across the

Internet, which is well within the latency requirements for online

gaming.

CCS CONCEPTS

• Security and privacy → Denial-of-service attacks;

Distributed systems security; • Computer systems organization

→ Client-server architectures; Peer-to-peer architectures; •

Software and its engineering→ Consistency;

KEYWORDS

Blockchain, multiplayer online games, peer-to-peer, client-server,

cheat prevention, distributed denial-of-service.

ACM Reference Format:

Sukrit Kalra, Rishabh Sanghi, and Mohan Dhawan. 2018. Blockchain-based

Real-time Cheat Prevention and Robustness for Multi-player Online Games.

In The 14th International Conference on emerging Networking EXperimentsand

∗
Work done when the author was at IBM Research.

†
Work done when the author was an intern at IBM Research.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6080-7/18/12. . . $15.00

https://doi.org/10.1145/3281411.3281438

Technologies (CoNEXT ’18), December 4–7, 2018, Heraklion, Greece.ACM, New

York, NY, USA, 13 pages. https://doi.org/10.1145/3281411.3281438

1 INTRODUCTION

The cheating industry for multi-player online games (MOGs) has

become a multi-million dollar business [10]. Games such as Age of

Empires have seen a huge exodus of players due to cheating [74],

and for subscription-based games, player loss translates directly to a

reduction in revenue. Further since game performance is susceptible

to communication latencies, and because the game servers employ

a client-server (C/S) setting (which is a central point of failure),

game networks have become an easy target for DDoS attacks. As

a result, Microsoft, Sony, Nintendo, Steam, etc., have all suffered

debilitating DDoS attacks in the recent past [1, 27, 33, 39] enduring

losses worth millions of dollars, in spite of investing heavily in

maintaining and protecting their servers.

Much prior art in the area of cheat detection/prevention involves

monitoring game state, either at the client’s end or server or both.

Server-side solutions require correct modeling of client behavior

to validate client inputs [42, 44, 55, 56, 58, 66]. Such solutions

mandate some trusted reference implementations against which

client observations are matched. However, gathering reference

implementations may not be practical in all scenarios. Client-side

techniques often require support from sophisticated software [29,

35, 50, 70] or hardware [51] for intrusive end-host monitoring, and

have met with strong resistance from the users [30].

While prior work has proposed several solutions as discussed

earlier, a comprehensive defense for MOGs mandates two key

properties. First, the solution must ensure that participating entities

must abide by the rules of the game at all times. Second, the

non-participating entities such as network bots must not be able to

sabotage game play. In other words, the game must be resilient to

the actions of malicious entities both within and outside the game.

Tracking malicious behavior in distributed systems has

traditionally leveraged audit systems that rely on tamper-evident

logging [44, 55, 56, 66]. A recent secure-by-design logging

scheme is blockchain which fuses known cryptographic techniques

with peer consensus to provide a tamper-resistant, distributed,

append-only ledger. While traditionally developed for virtual

currencies, blockchain has been adopted in domains such as

physical asset management [16], healthcare and real-estate [15].

However, many academics and practitioners have argued that the

use of blockchain, especially in a private setting, is driven by

hype [8, 28, 38] since most of these applications do not necessarily

require peer consensus amongst all participating entities. In

contrast, peer consensus is a natural fit for the detection of cheating

in multi-player games, given the subjective nature of cheating due

to ambiguity in interpretation of the implicit rules of a game.

https://doi.org/10.1145/3281411.3281438
https://doi.org/10.1145/3281411.3281438

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece S. Kalra et al.

In this paper, we present a novel yet concrete application of the

blockchain technology where it can be used efficiently. Specifically,

we demonstrate an approach that exploits peer consensus in

blockchain to address the problem of cheating in online games. Our

technique leverages blockchain to manage the definitive game state,

and uses peer consensus to validate all player actions that affect it

in real-time. Our approach is novel because it obviates the need for

a centralized, trusted server-based validation while retaining the

prevention of a large class of cheats, equivalent to that available

in C/S architecture, where the reported client state is inconsistent

with the observed state at the server. Furthermore, since blockchain

mandates a P2P architecture, we get added benefits of scalability and

robustness against crippling DDoS attacks by design [4–7, 9]. Note

that C/S architecture has always held precedence over peer-to-peer

(P2P) deployment, in spite of P2P’s robustness to withstand attacks

and obvious scalability benefits. This bias is due to the fact that P2P

clients are deemed untrustworthy and cheat detection is hard in

the absence of a trusted intermediary. Lastly, our approach affords

unprecedented flexibility in game customization without making

major changes to the client itself.

While using blockchain facilitates easy migration to P2P

architecture, it makes game state publicly visible to all peers. This

problem gets exacerbated in the case of incomplete information

gameswhere it can lead to a loss of player privacy and introduce bias

in gameplay. For example, players may willfully target other players

with lower resources. We address this challenge by leveraging prior

art [43] on privacy-preserving consensus for blockchains using

secure enclaves. Note that while privacy can be enforced in a C/S

setting through lack of visibility across user actions, absolute cheat

prevention along with defense against DDoS attacks is typically

harder to achieve due to architectural constraints.

In order to leverage blockchain, our strategy requires developers

to port code running previously on the server to a smart contract,

which programmatically encodes the rules of engagement and

executes atop all participating peers in the blockchain network.

There are two key benefits of this mechanism. First, it enables

players to modify smart contract code according to their needs.

Current games allow extremely limited or no customization,

forcing individuals to modify game binaries, thereby violating the

publisher’s intellectual property and potentially defeating security

features built into the game. Thus, the legitimate customization

offered by our approach allows playing the game under custom

rules and settings agreed upon by a group of players, which further

reduces incentives for cheating. Second, our approach does not

disrupt the existing client communication ensuring that games can

work with minimum client modifications.

In our approach, the game performance is contingent on

the blockchain platform’s per-operation latency. While recent

platforms [3, 31] allow throughput of thousands of operations

per second, their per-operation latencies are still high. We present

several optimization strategies to improve the per-operation latency

and enable real-time cheat prevention while keeping the game

scalable. We further argue the efficacy of our approach to support

modern games though a study of scalability and performance

requirements for fast-paced games available on Steam.

While our strategy is most suitable for games developed from

scratch, we demonstrate its effectiveness by applying it to a recent

port of Doom [11], a hugely popular, multi-player First Person

Shooter (FPS) game, and use Hyperledger Fabric (or Fabric) [22]

as our blockchain platform. Our choice of Doom was limited by

the lack of modern open-source FPS games available. Note that

our current implementation atop Fabric does not leverage secure

enclaves for privacy-preserving computation. Our evaluation shows

that the approach is scalable and reports a cheat prevention latency

of <150ms with 32 peers deployed across the Internet, which

suggests that the performance with secure enclaves in place will still

be well within the latency requirements for online gaming. Further,

our port of Doom can scale to client tickrates—the event sampling

rate at the client to update the server—supported by modern games

without affecting cheat prevention latencies.

This paper makes the following contributions:

• We demonstrate a novel yet concrete application where the

blockchain technology can be used efficiently. Specifically, we

present the first practical approach (§ 4 and § 5) to prevent

cheating in MOGs using blockchain, which provides scalability

and robustness by design, and also enables legitimate game

customization.

• We present an implementation of our approach (§ 6) complete

with several optimizations that make it suitable even for games

with low-latency requirements, such as FPS.

• Our evaluation (§ 7) shows that our technique is accurate,

scalable, and applicable to modern games. We also demonstrate

case studies to highlight its extensibility and flexibility.

2 MOTIVATION

2.1 Peer Consensus as Anti-cheat

Game modifications (or mods [25]) are usually deemed as cheating

by the game developers and publishers alike [20] for two reasons.

First, modification of game binaries violates the publisher’s

intellectual property and may defeat security features built into

the game. Second, it may pit players of unequal strength against

each other. Publishers, thus, exercise strict control over the game

ecosystem, right from the distribution of the game to its patches

and addons.

Players, on the other hand, perceive games as fair when they

achieve rewards commensurate with their actions. In online

multi-player games, cheating provides an unfair advantage and

detracts from the experience for other players. However, cheating

is often dependent on the gaming community’s social customs and

implicit rules. Prior art [45, 46, 59–64, 68, 71, 77–79] cites cheating

as the gulf between the designer’s intent and the social aspects

of games, the implicit rules, and the ambiguity of interpretation

and use, i.e., the range of ways that individuals play. Given the

subjective nature of cheating, peer consensus provides a level

ground for all players and is an attractive and inexpensive anti-cheat

mechanism. It also offers transparency and flexibility in designating

what constitutes as cheating.

2.2 Online Games Most Vulnerable to DoS

There are three key factors that make a game network more

vulnerable than traditional Internet-based services.

(1) Gaming platforms rely on unique, custom network protocols

built for performance. There is very little information available

Blockchain-based Real-time Cheat Prevention and Robustness ... CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

about how legitimate users interact with such services, thus

making it virtually impossible for third-party solution providers

to distinguish between a DDoS bot and a legitimate gamer, and

causing mitigation for gaming servers to be much more challenging

and resource-intensive.

(2) Online multi-player action games primarily depend on the

absence of latency, and every millisecond between user input

and its feedback can severely disrupt gaming experience. Thus,

attackers need not shut down a server to cripple game networks;

they merely need to introduce latency, which is much easier than

bringing down an Internet-based service. For example, while an

attack on an e-commerce website resulting in a half-second latency

might go unnoticed, an assault on a game server causing the same

delay would completely stop all activity—not because the server is

unavailable, but because the game becomes unplayable.

Further, attackers may not even target the game network directly.

Instead, they may focus on the upper-tier ISPs required to connect

to the game server/data center. For example, attackers targeted

the Final Fantasy XIV game servers by focusing on upper-tier ISPs

causing instant disconnects [17].

(3) High traffic periods in the gaming world are predictable.

Providers announce product releases in advance, and these dates are

often followed by peak traffic. Even in the absence of DDoS attacks,

gamers complain about latency due to high traffic. With servers

already operating at capacity, the DDoS threshold is significantly

lowered. Thus, it is the perfect time to launch assaults like the

Christmas day attack [13].

3 BACKGROUND

3.1 Blockchain and Smart contracts

Blockchain is a distributed ledger that records transactions

between multiple, often mutually distrusting parties in a verifiable

and permanent way. These transactions are maintained in

a continuously growing list of ordered “blocks”, which are

tamper-proof and support non-repudiation. Apart from the

transactions, each block also includes state metadata, including

the creation timestamp, the hash of the previous block in the

chain, and smart contract code and data. A smart contract is

an autonomous application that digitally enforces the rules of

multi-party interaction through a blockchain.

The distributed ledger is managed atop a P2P network that

adheres to a common protocol for inter-node communication and

validation of new blocks. This validation involves a distributed,

computational review on each block, and enables consensus even

in a mutually distrusting environment. Once a block is validated,

its data cannot be altered retroactively without collusion of the

network majority.

3.2 Attack Model

There are four classes of cheats that we consider in our attack

model.

(1) Game cheats occur completely within the game program and

cheaters exploit design/implementation to gain advantage without

additional programs or modifications. For example, cheaters can

gain gaming advantage by purchasing a game item or virtual

currency using a real-world currency. A cheater may also pay

another person to play their character for them in a game session.

Such cheats are often detected using statistical analysis of the game

log files, and are relatively easier to detect in C/S architectures than

the traditional P2P.

(2) Application cheats either modify the game executable or data

files, or run programs that read from/write to the game’s memory

while it is executing. An example is information exposure where

cheaters to gain access to information that they are not entitled

to, such as their opponent’s health, resources, etc. Other examples

in this category include the use of bots/reflex enhancers. Such

cheats usually require modification to the game client or running

an external program to generate player input. Bots use computer

AI to automate repetitive tasks, while reflex enhancers augment

user input to achieve better results. FPS games suffer from reflex

enhancers that automatically aim at opponents. Both C/S and P2P

architectures are vulnerable to this form of cheating.

(3) Protocol cheats involve interfering with the game traffic. An

attacker may insert, modify, drop, or duplicate game packets either

sent or received. These cheats, however, are often dependent on

the game architecture, i.e., C/S or P2P. Several of such cheats can

be detected/prevented with use of synchronized time clocks and

cryptographic protocols. However, collusion, which involves two or

more players communicating using an out-of-band channel to gain

an unfair advantage, is still extremely difficult to detect/prevent.

(4) Infrastructure cheats involve tampering game software (e.g.,

display drivers) or network hardware. For example, information

exposure is enabled by modifying either the client’s network

or display drivers. Further, infrastructure-level reflex enhancers

involve a proxy between the client and the server that modifies

client’s packets to improve the cheater’s actions.

We address prevention of cheats where the reported game state

is inconsistent with the observed state at the server, such as invalid

modifications to tangible player assets. Thus, we aim to prevent

majority of the cheats across the classes as discussed earlier, except

for collusion and reflex enhancers. While collusion cannot be

detected/prevented by any known anti-cheat mechanism, detecting

reflex enhancers requires additional client-side heuristics [29, 35]

even for state-of-the-art C/S games. Further, we also do not consider

prevention of cheats related to client-only state such as map hacks

since they are not tracked at the server. In other words, we aim to

address all cheats that can currently be detected/prevented in the

C/S game model.

We also assume a Byzantine majority of honest players who

do not share their private keys to collude. Each player sends state

updates and receives feedback over secure channels, i.e., messages

cannot be tampered with, and all peers are equipped with secure

enclaves to enable privacy-preserving computation. We place no

other restriction on the players.

3.3 Game Model

Consider an MOG G with a set of k players (P) and n available

assets (A). We model G as a sequence of states with transitions

being player actions that take the game from state Si to Si+1. An
action by player p is an update to a game asset a. Thus,

G = [Si] | {Si
τ
−→ Si+1} (1)

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece S. Kalra et al.

where τ = F (p,a) represents game update due to player p (p ∈ P)
on an asset a (a ∈ A), and F is the update function. Overall game

state Si is computed as an aggregation of individual client states.

However, not all assets contribute to the client’s game state; some

assets may only be required to render relevant client state and do

not impact the game logic. Thus, we define a game state Si at time t
as an aggregation of all relevant asset valuations across all players.

Si (t) =

|P |⋃
j=1

|AR |⋃
k=1

⟦ϕ(pj ,ak , t)⟧υ (2)

where υ is the actual valuation of ϕ (the asset valuation function)

at the current timestamp t , with pj ∈ P and ak ∈ AR (which is the

set of all relevant assets), and |AR | ≤ |A|.
Communication. Client to server messages involve sending

individual client valuations ⟦ϕ(pj ,ak , t)⟧υ over secure channels.

Some of these messages may be batched together at the client to

improve throughput. Server to client feedback is communicated

corresponding to each individual valuation sent by the client. In

case of batched client valuations, the server may batch the feedback

as well.

Cheating. Since all messages are transmitted over secure

channels, cheating may occur iff (i) client valuations sent to the

server are themselves incorrect, or (ii) the feedback from the server

is faulty leading to incorrect subsequent client valuations. Formally,

we define cheating as an illegal state transition, i.e., a transition

not allowed by the game due to an incorrect client valuation

⟦ϕ(pj ,ak , t)⟧υ . Thus, cheat prevention in games crystallizes to

preventing clients from communicating incorrect valuations. A fair

gameGf air , thus, mandates that each game state is also individually

fair.

Gf air = [Si | P(Si)] ∀Si ∈ S (3)

where the function P determines the veracity of a game state,

and S is the set of all game states. Since Si is an aggregation over

individual client valuations (per Eqn. 2), it is fair iff all individual

client valuations are also correct. Thus,

P(Si (t)) =

|P |⋃
j=1

|AR |⋃
k=1

P(⟦ϕ(pj ,ak , t)⟧υ) (4)

4 OUR APPROACH

Overview. Our approach leverages blockchain’s peer consensus

to update all game states, enabling prevention of a large class of

cheats. Blockchain offers a convenient way to detect cheating since

the individual game states Si map naturally to transactions in the

blockchain with the function P being the consensus protocol. Thus,

any state Si that does not reach consensus on client valuations may

potentially represent an attempt to cheat, and is not stored on the

blockchain. In other words, a blockchain with client valuations as

committed transactions represents the fair game Gf air . As will be
shown later in § 7.2.2, our approach does no worse cheat detection

than the standard C/S architecture.

Our approach also enables decoupling asset management from

other game logic into a smart contract. A publisher may choose

to distribute their version of the contract that supports just

visual enhancements. In contrast, publishers willing to embrace

community efforts, can provide a game client that supports a more

powerful contract managing both asset management logic and

visual customization. Unlike game binary modification, the player

community can leverage such game clients to develop their own

smart contracts and customize the game as desired, which further

reduces any incentive for cheating.

Workflow. Our approach relies on two components—(i) a smart

contract that encapsulates server logic and transparently executes

within a secure enclave, and (ii) a shim that interfaces between

the game client and the contract, to preserve the original C/S-style

communication. The shim also sets up peer network generation—a

one time activity to setup blockchain peers and interfaces between

the game client and the blockchain platform.

The game client sends events to the shim, either raw keystroke

or mouse events or game events. The shim encapsulates these

events and relevant asset information within a query object along

with a nonce (to defend against replay attacks). It leverages the

blockchain APIs to create a transaction for this query, which

contains an invocation of the publicly visible smart contract API

responsible for handling the event. Subsequently, the blockchain

platform (a) leverages an ordering service
1
to determine the order

of transactions received from different peers, (b) generates a block

containing the ordered transactions, and (c) sends it to all peers for

validation. The peers then execute these transactions in order locally

(via the smart contract API invocation), and vote for consensus

on each event following which they update their copy of the

ledger. Finally, the shim polls the smart contract to determine the

status of the transaction, i.e., whether peers achieve consensus, and

communicates it back to the game client, thereby completing the

feedback loop.

Note that such decentralized consensus entails that each peer has

access to every peer’s asset information stored on the ledger, albeit

encrypted. This proliferation of data on the blockchain contradicts

the goal to keep each player game state confidential and maintain

privacy for the players. Although cryptographic protocols such as

secure multiparty computation offer attractive solutions for privacy,

they may not offer scalable, real-time performance. A promising

alternative is the use of trusted execution environments such as

secure enclaves. Thus, our approach mitigates privacy concerns by

executing the game smart contract within secure enclaves.

4.1 Smart contract

The smart contract is akin to a server and encodes the logic to

manage player assets. However, manually writing contracts from

scratch is error-prone. Thus, we provide a template for developers

to easily specify constraints on game events and assets, and a

code generator that reads the specification to generate boilerplate

contract code that separates management of game assets and

its rendering logic. Additionally, this boilerplate code extracts

the nonce from the per-transaction query object and determines

whether or not the transaction has been observed earlier to defend

against replay attacks.

Note that smart contract execution within the secure enclave is

transparent to the client and the shim. Thus, we omit discussion on

1
The ordering service is a high availability cluster of nodes that leverage protocols

such as Kafka to reach consensus over the order of the transactions submitted to the

blockchain. The orderers use the transaction’s timestamp to order it within a block,

before sending the block out for validation.

Blockchain-based Real-time Cheat Prevention and Robustness ... CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

Tag Description

Power (pwId, change, factor), where pwId ∈ N, change ∈ {+,×},

and factor ∈ Z

Asset (aId, value, name, {power}), where aId ∈ N, value ∈ R≥0
Player {pId}, where {pId ∈ N | 1 ≤ pID ≤ Maxp }

Affects (pId, aId, pwId), where pId ∈ (N ∪ {self, *})

Event (eId, name, {affects}), where {eID ∈ N | 1 ≤ eId ≤ Maxe }

Table 1: Constraint specification language.

smart contract registration with the secure enclave and subsequent

privacy-preserving secure computation on the blockchain state.

We refer interested readers to Brandenburger et al. [43] for the
necessary details.

4.1.1 Constraint specification. Table 1 lists the language for

specifying constraints and dependencies between game events

and assets. While we do not claim completeness of the language,

we believe it is expressive enough for most games. The

specification has three parts—asset, event and player definitions.

Asset specifies a game asset with several attributes—value

specifies a default value, power defines the different modes of

operation of the asset, where change indicates whether increase

or decrease is additive/multiplicative, and factor lists the scale

by which to increase or decrease the asset value. The power

definitions model power modes of assets in the game where asset

increment/decrement differs from normal game mode. Event lists

the game event and its dependencies upon the already specified

assets. The Player tag specifies a player.

4.1.2 Code generator. The code generator has three main

functionalities. First, it creates APIs to add players after peer

discovery, and start the game whenever players are ready. Second, it

generates code to instantiate key-value stores (KVS) corresponding

to each player’s assets. This fine grained per-player per-asset

partitioning helps minimize any potential read/write conflicts

within the blockchain platform. Third, the code generator creates

publicly visible smart contract APIs to instantiate a game session

with peer players and manage the KVS on receipt of specific game

events. Any additional logic must be added by the developer himself.

4.2 Shim

The shim provides an interfacing between game clients and smart

contract running atop the blockchain. It providesmechanisms for (a)

peer discovery, (b) peer network generation, (c) game instantiation,

(d) mapping game events to smart contract code, and (e) ensuring

client communication model remains unaltered. For the rest of the

paper, player refers to the network entity visible to the game client,

while peer is the network entity visible to the blockchain.

4.2.1 Peer discovery. Our approach assumes that there is one

starting peer, akin to the player starting a game room. The

shim for this peer is responsible for identifying available peers

corresponding to the players that participate in a game. While our

approach does not mandate any specific peer discovery protocol, a

truly decentralized approach such as distributed hash tables [75]

will work. To do so, the shim advertises the smart contract for the

game and its associated consensus policy. Specifically, it listens

for incoming connections from other peers for a designated time

duration. Interested peers communicate their intent to play the

game by sending their credentials, i.e., PKI certificates and IP

address, to the initiator shim. Note that these credentials are

required for instantiating a game session. The consensus policy is a

boolean formula over asset update validation results communicated

by each peer. In the absence of any user specified consensus criteria,

we fallback on the blockchain platform’s default consensus policy.

4.2.2 Network generation. Post peer discovery, the initiator shim
creates and distributes a genesis block to all peers signifying the

start of the common distributed ledger. With all the peers setup,

the initiator shim starts a protocol to generate random numbers at

each peer’s shim using secure multi-party computation [83], and

maps each peer’s certificate with its generated random number

(representing unique player identities). This mapping is required to

maintain player anonymity. Note that this sensitive communication

happens out-of-band and is not stored on the public ledger. Each

peer’s shim maintains this mapping for all peers. Whenever any

asset validation response needs to be forwarded to the game client,

the shim uses this mapping to replace the peer certificate with the

correct player identity, so that the corresponding game client can

render correct information for the affected player.

The initiator shim finally deploys the game smart contract on

every peer, following which each peer shim independently executes

the contract. The underlying blockchain platform ensures that

the same contract is deployed on every peer. Any discrepancy

would result in the specific peer not being able to join the game.

Further, the contract at each peer has no knowledge of other

peer’s certificate to player identity mapping. This mechanism helps

suitably anonymize players in the contract without affecting the

game code.

4.2.3 Game instantiation. With the game smart contract deployed,

every peer invokes a specific smart contract API to instantiate its

relevant initial asset state on the ledger. Subsequently, the initiator

shim invokes another smart contract API to launch the game UI

and start the blockchain-based validation of game events.

4.2.4 Game events to smart contract mapping. In a typical game,

raw user inputs such as keystrokes or mouse movements are sent

to the server or other peers to simulate corresponding player

actions. In our approach, these inputs are mapped to the relevant

smart contract APIs responsible for handling the event (in a query

object). However, to correctly decode the inputs and handle the

events, our approach requires a client to register its (a) game

session encryption keys, (b) network packet format for valid asset

update events with the shim, and (iii) network packet format for

event acknowledgements. This interaction enables the shim to

(a) intercept and decrypt the network packets from the game, (b)

subsequently, extract the asset updates from the network packets

(given the registered packet format) and send them to the smart

contract along with a per-event generated nonce, and (c) forward

an acknowledgement to the client for every event it receives.

The above mechanism ensures our approach works with an

unmodified client. However, clients may not share their session

encryption keys for security reasons. Thus, we envision the shim,

which is a minimal, standalone component by itself, to be integrated

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece S. Kalra et al.

as a module within the client. This inclusion makes the shim a

part of the client’s trusted computing base, and ensures that it is

protected by the same security mechanisms as the client itself, i.e.,

a cheater may need to inspect process memory to extract the player

identity to peer certificate mapping and deanonymize the players.

4.2.5 Client communication. The shim acts as a proxy for the game

client, and ensures an unchanged client communication model by

transparently transforming the messages between the client and

the smart contract, which encodes the game’s server-side logic. We

now highlight features of our approach that enable this unaltered

client communication.

(1) Feedback loop: Clients perform prediction along with entity

interpolation to keep the game responsive. However, they must

reconcile with the global game state when the server pushes

the updates back to the clients. This server reconciliation step

constitutes the feedback loop for the client. Our approach remains

faithful to this model. If a SHOOT event occurs, the shim synchronizes

with the client informing it about the reduction in ammunition. To

do so, the shim maps each query object to a unique transaction

identifier generated by the blockchain platform. It then polls the

blockchain at every tick for the transaction’s commit status, and

sends an update to the game client, which is akin to the server

acknowledging the receipt of events per tick in a C/S setting.

(2) Event batching: Events, like location updates or SHOOT, may

be generated at a high frequency and can cause a large number of

them to queue up at the shim leading to jitter and lag. The shim

addresses this challenge by batching up similar but consecutive

events with continuous acknowledgement numbers before creating

the query object. This optimization ensures that dependent events

are always processed in order. For example, if a client sends five

successive SHOOT events within a single game tick, the shim batches

them and creates one query object to decrease the ammunition

by five. This batching reduces the invocations to the blockchain

(and subsequently to the smart contract) to just one instead of

five. However, if a player gets hit after the second SHOOT event, his

associated health must decrease before he can shoot any further.

Thus, the shim creates two separate batches of two and three SHOOT

events respectively, with the health reduction event in between,

thereby preserving the order of events.

4.2.6 Blockchain teardown. Since a game session is ephemeral and

state does not persist across sessions, the shim tears down the

blockchain at the end of the game session.

5 DISCUSSION

Security. The shim uses PKI certificates to bind peer identities

with the blockchain, and ensure that an adversary cannot

masquerade unless it has the victim peer’s private key. Since the

game’s communication model remains unchanged, our approach

does not violate any safety and liveness property that held true

in the C/S version of the game, assuming that the private keys

are safely managed. An adversary can, however, still misrepresent

the amount of batching to his advantage. For example, in an FPS

game, using a modified shim, a player can mask ammunition

wastage by sending incorrect batch updates to the smart contract.

If a player sends five SHOOT events in quick succession, three of

which miss the target, a tampered shim can send a batched SHOOT

event decreasing the ammunition by two. This is akin to using

reflex enhancers that auto-generate user events and do not impact

the client’s state-managed at the server. Determining the veracity

of these events requires additional client-side heuristics [29, 35]

that fall outside the purview of our approach. Note that use

of such heuristics to detect cheating is a requirement even for

state-of-the-art C/S games.

Privacy. Although a game session is ephemeral and game

state does not persist across sessions, Blockchain’s open design

exacerbates the privacy concerns during a game session by

making it hard for blockchain-based games to keep sensitive asset

information private in adversarial P2P settings. Consider two

scenarios that demonstrate why we need safeguards before placing

asset information atop the blockchain. For the scope of this paper,

we limit ourselves to FPS, RTS and full information games. Prior

work [65] has already explored blockchain for card games.

(1) In an RTS game, a player’s strategy is influenced by the

opponent’s resources, such as available wealth. Full knowledge

of a player’s resources can influence game strategy and introduce

bias against the player. In a C/S model, such critical information is

kept secret with the server and not revealed.

(2) In full information games, like dice-based board games, merely

putting the value of a dice roll on the blockchain raises concerns

about non-repudiation. All players may not trust the value

generated by the player under consideration.

Our approach leverages prior work [43], which has studied

privacy-preserving smart contract computation in the context of

blockchain using secure enclaves, to achieve consensus on the

encrypted player asset values. Use of secure enclaves allow peers to

operate with entire encrypted asset stores as opposed to individual

asset entires, and are much more robust to dictionary attacks

due to the significant randomness built into the data structures.

For full information games requiring robust distributed random

number generation in adversarial presence, our technique leverages

prior art [40, 67]. Our approach can also be applied to other

full information games, like Chess or Monopoly, that need only

non-repudiation and have no privacy concerns.

Note that while in principle it may appear that secure enclaves

obviate the need for trusted data sharing leveraging blockchain,

there are several operational limitations that make use of enclaves

alone prohibitive. First, enclaves offer limited physical resources,

including memory, which may not be sufficient to keep the

entire game state in memory. Second, use of secure enclaves is

susceptible to rollback and forking attacks on stateful applications

that make use of persistent storage [69, 76]. While enclaves provide

mechanisms against main-memory replay attacks, persistent

storage is not under the direct control of the enclaves and therefore

harder to secure. Our approach based on prior work [43] mitigates

such threats.

Extensibility. Our approach enables enhancements (albeit

limited) to both visual and logic aspects of the game. This

extensibility requires the developer to support enhancements using

sprites via well-defined smart contract APIs. For example, addition

of a new weapon in an FPS game would require (a) installing the

weapon sprite on the client, and (b) regeneration of the smart

contract with appropriate asset definitions. Since asset management

Blockchain-based Real-time Cheat Prevention and Robustness ... CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

<Assets>

<Asset aId="1" value="100" name="Health">

<power pwId="0" change="+" factor="-1" />

<power pwId="2" change="+" factor="1" />

</Asset>

<Asset aId="2" value="0" name="Ammunition">

...

</Asset>

...

<Players>

<player pId="1"> Player 1 </player>

...

<Events>

<Event eId="1" name="Shoot">

<affects pId="*" aId="1" pwId="0" />

<affects pId="self" aId="2" pwId="0" />

</Event>

...

Figure 1: Snippet of constraint specification for Doom [11].

is decoupled from the game, such customization does not require

modifications to the game binary, and thus it neither tampers with

any security features nor violate any intellectual property. Also,

since the smart contract is advertised a priori, all players start on

the same footing.

DDoSmitigation.Our approach, which inherits the blockchain’s

P2P architecture, has the desired protections to mitigate DDoS

attacks built into it by design. In order to DDoS all game rooms

in a C/S setting, the adversary may exploit the locality of the

rooms on the central game server, and only needs to attack either

the server or the network route leading to it. However, to cause

equivalent damage in our approach, which has no central point

of failure, the adversary must bring down at least one-third of

the participants in each game room (when considering Byzantine

failures), which is orders of magnitude harder than the C/S setting

since the participants have no locality and can be spread anywhere

in the world. Thus, unlike in C/S setting, our approach enables

game interactions to continue even if several nodes go offline.

6 IMPLEMENTATION

We implement a prototype of our approach and demonstrate its

effectiveness on a recent port of Doom [11]—a fast-paced FPS game

that represents a worst case scenario for our approach due to the

high-frequency of events and real-time constraints. We used Fabric

v1.0 as our blockchain platform, and our shim required ∼2K LOC of

Javawith∼500 LOC of Bash scripts as glue code.We parse theDoom

constraint specification (snippet in Fig. 1) and implement the smart

contract generator in Jennifer [24], resulting in a generatedGo code

of ∼500 LOC. Since Fabric v1.0 supports only crash fault tolerance

(instead of Byzantine failures), our default consensus policy involves

a simplemajority. At the time of writing, Brandenburger et al.’s Intel
SGX-based [23] secure enclave implementation [43] for privacy

preserving computation was unavailable for Fabric v1.0. Hence

we compute consensus on unencrypted asset values and leave the

SGX-enabled implementation for future.

(i) Doom client. We integrated the shim with the client and

registered packet formats for 9 assets, i.e., ammunition, weapon,

health, armor, keys, player position, invisibility pack, radiation suit

and berserk pack. Our client did not use any encryption so we

did not register any game session key with the shim. Overall, we

modified ∼70 LOC across 4 files to include the shim into the client.

(ii) Smart contract generator. Our Doom specification

(snippet in Fig. 1) includes 9 assets and 11 events corresponding

to shoot, weapon change, damage to sprites, gaining power

ups (weapons, clips, medical kits, radiation suit, invulnerability,

invisibility and berserk) and location updates. The code generator

uses the output from the parser to generate a boilerplate smart

contract consisting of (i) a verifier against transaction re-playability

by checking the submitted nonce against previous nonces, (ii)

per-player per-asset KVS definitions, (iii) publicly visible APIs for

handling every event defined in the specification, (iv) addPlayer

API to initialize player assets on the ledger, and (v) startGame API

to begin asset validation and run the GUI. Our prototype includes

support for both player and weapon sprites.

(iii) Shim. The shim implements three key functionalities.

• It provides a REST-ful peer discovery mechanism for ease of

implementation. Interested peers communicate their intent to

play the game by issuing a request to the listener with their PKI

certificate and IP address as the payload.

• It automatically generates the blockchain network for

the advertised peers. Fabric mandates blockchain network

configuration to be specified in the configtx.yaml file, which

contains entries for each advertised peer and is used to create

the genesis block. The initiator shim distributes the generated

genesis block and the smart contract along with the consensus

policy to be asserted for each asset validation. Subsequently, each

peer starts execution of the distributed contract by invoking the

peer chaincode command in Fabric CLI and initializes its assets by

calling the addPlayer API.

• Each peer shim generates the player identity to peer identity

mapping using prior art [40, 67] and the initiator shim invokes the

startGame API. On game start, the shim listens for client events,

generates a per-event nonce, maps events to contract APIs and polls

the blockchain for consensus at every tick, and relays it back as an

acknowledgement.

(iv) Optimizations. Event validation is the complete processing

of a single asset update. It has two stages—(i) peer consensus, i.e.,

agreement amongst the peers regarding the correct execution of

the transaction in accordance with the smart contract, and (ii)

synchronization of the ledger state amongst the peers. We discuss

below several optimizations aimed at reducing event validation

latencies.

• Blocks in Fabric can contain multiple transactions. When

processing a block of transactions, Fabric acquires a block-level

read/write lock on the KVS corresponding to the assets under

consideration. For example, if a player shoots two successive bullets

and the two events spawn two transactions within the same block,

Fabric will reject the latter transaction. This problem is exacerbated

when the smart contract maps the player (as key) with all his assets
(as value) leading to sequential event validation. Since the scenario

of different transactions operating on different assets belonging to

the same player is frequent (e.g., ammunition and health reduction),

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece S. Kalra et al.

the inability to pipeline the stages in the event validation process

restricts any improvements to the average validation latency. Our

prototype overcomes this challenge by (i) generating smart contract

code that splits each asset per player into separate KVS, and (ii)

limiting a block to transactions affecting mutually exclusive KVS.

• We maximize the impact of the above optimization by ensuring

an optimal block size that corresponds to the number of most

frequently updated events operating on mutually exclusive KVS.

This optimization amortizes the cost of ledger synchronization

across the transactions in a block, since the synchronization

happens once on block creation. A higher number of mutually

exclusive assets would reduce the average event validation latency

even further.

• Finally, we implement multi-threading at the shim to completely

parallelize peer consensus for all the transactions in a single block.

Note that each thread must handle only one type of asset; handling

different types of assets at different execution points may lead to

race conditions. Preventing such races would require appropriate

thread synchronization. However, to ensure correctness and prevent

delays due to synchronization, we do not consider this approach.

7 EVALUATION

Experimental Setup. We evaluate our approach with a recent

port of Doom and leverage Fabric v1.0 as our permissioned

blockchain platform. Unless specified, we conduct all our

experiments in an Internet-wide deployment with Fabric peers

as Docker containers running atop SoftLayer [32] servers located

at Dallas, San Jose and Toronto. Each peer was provisioned with

4 cores, 16GB RAM and ran Ubuntu 16.04. We use Docker Swarm

to orchestrate the setup so that the peers and Fabric services are

deployed randomly across the overlay network of the servers.

7.1 Study of Modern Games

While our blockchain-based approach works for all classes of games,

FPS games represent a worst case scenario due to their requirement

of real-time consensus on every event update. To understand the

performance and scalability requirements of modern games, we

select 10 hugely popular multi-player FPS games on Steam [33] (of

the total 15 available for Linux/SteamOS [18]), and determine the

(i) average and maximum number of players per game session, (ii)

average latency for successful gameplay, and (iii) client tickrate.

Lastly, we also determine the distribution of low latency game

servers for our setup, so that we can benchmark the desirable

overheads for our prototype. Note that we restrict ourselves to

Linux games for operational reasons alone.

Methodology. For each game, we compute the average and

maximum player participation per session across top 500 game

rooms using data from online game trackers [19].

We extract the average latency for a successful game session

and the default client tickrate directly from the Steam console

itself. Specifically, we list Steam servers in decreasing order of

latency, and attempt a connection with each of them. If the game

loads successfully, we play the game for 10 mins to determine

actual playability. We record the average latency and default client

tickrate, and stop if we do not perceive any jitter or lag. Otherwise,

we attempt connection to the next server in the list.

Game

Players Average Client

Avg. Max Latency (ms) Tick Rate

Counter-Strike 1.6 25.49 32 241 30

Counter-Strike: GO 18.93 63 240 64

Counter Strike: Source 14.84 64 234 66

Day of Defeat 4.59 30 245 30

Double Action: Boogaloo 0.42 17 288 30

Half-Life 1.75 31 258 60

Half-Life 2: Deathmatch 0.99 64 244 30

Left 4 Dead 2 2.38 24 272 30

Team Fortress Classic 0.41 15 253 30

Team Fortress 2 5.63 32 270 30

Table 2: Study of latency, tickrate and player participation

in FPS games.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

C
S
1
.6

C
S
:G

O

C
S
:S

D
A
:B

D
o
D

H
L

H
L
2
:D

M

L
4
D
2

T
F

T
F
2

%
 S

e
rv

e
rs

0-50 ms

50-100 ms

100-150 ms

150-250 ms

250-350 ms

350-600 ms

Figure 2: Distribution of servers based on observed latencies.

Since high latencies can hamper performance in multi-player

games [21, 36, 37], we determine the latency distribution of the

available game servers. To do so, we categorize the observed

latencies for the corresponding Steam servers into 6 latency bins.

Results. We plot the findings in Table 2 and Fig. 2, and list the

key take aways below.

(1) The average latency for perceived successful play across all

games in our setup ranged upwards of 230ms.

(2) Most modern FPS game clients operate at a tickrate of 30, and

only 3 out of 10 games operate at a higher tickrate.

(3) The average player participation across all games was ∼8, and

only 3 games have player participation >32.

(4) Across all games, the majority of the servers available lie

within the 100-350ms latency buckets. Even though lower latency

is desirable, there are not enough servers available with <100ms

latency.

The above study lists empirical observations based on the

prevailing conditions at that moment, some of which may change

over time. However, it provides an overview of the popular games,

and other non-Linux FPS games would also exhibit similar statistics.

Blockchain-based Real-time Cheat Prevention and Robustness ... CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

 1

 2

 4

 8

 16

 32

 64

 128

 0 100 200 300 400 500 600 700 800 900

F
re

q
u
e
n
c
y

Events

Armor
Health

Location
Shoot

Weapon

(a) Event frequency in 24 min session.

 0

 10

 20

 30

 40

 50

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

M
a
x
 F

re
q
u
e
n
c
y
 (

E
v
e
n
ts

/s
)

Demos

Armor
Health

Location
Shoot

Weapon

(b) Maximum event frequency in dataset.

 0

 100

 200

 300

 400

 500

 600

 1 2 4 8 16 32 64

A
v
g
.
E

v
e
n
t
V

a
lid

a
ti
o
n
 L

a
te

n
c
y
 (

m
s
)

Peers

W/ Multi-Threading + Blocksize
W/ Multi-Threading
Baseline (5 assets)

(c) Effect of block size & multi-threading.

 1

 10

 100

 1000

 10000

 100000

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Demos

Txn delays w/o Batching
Txn delays w/ Batching

Total Txn

(d) Transaction delays across sessions.

 1

 10

 100

 1000

 10000

 100000

1 2 4 8 16 32

Peers

Txn delays w/o Batching
Txn delays w/ Batching

(e) Transaction delays across peer configs.

 0

 10

 20

 30

 40

 50

 60

 70

 1 2 4 8 16 32 64

T
h
ro

u
g
h
p
u
t
(T

x
/s

)

Peers

Throughput w/ batching
Throughput w/o batching

(f) Throughput w/ all optimizations.

Figure 3: Evaluation of our approach with Doom.

7.2 Our Approach

7.2.1 Dataset. We analyzed 25 real-world Doom game sessions

provided by the community [14, 34] and use our prototype to

characterize the generated events at the shim. We log each event

name, the asset it depends on and the event timestamp. Overall, the

25 Doom sessions clocked over 6 hours of gameplay and logged

∼350K events.

Event freqency. We classify the logged events into five

categories—armor, health, location, shoot and weapon. We omit the

other low frequency events (per § 6) for brevity. Fig. 3a presents a

time series plot for different events in the longest session (of 24mins)

that contained ∼25K events. We observe that location update is the

most frequently received event at the shim. Since Doom operates at

35 game ticks per second, we see a stable location update frequency

of 35. We further plot the maximum event frequency distribution

for each event per session in Fig. 3b and observe that shoot, besides

location, is frequently updated, as expected in an FPS game. Events

for other assets have a sparse distribution. Since the maximum

update frequency is ∼35, our approach must be able to handle

at least 35 events per second per player to support multi-player

version of Doom, which allows a maximum of four players.

7.2.2 Cheat Prevention. Our approach addresses prevention of

cheats where the reported game state is inconsistent with the

observed state at the server, such as invalidmodifications to tangible

player assets. We now discuss how our approach handles such

cheats and list a comprehensive classification for the same in

Table 3.

Built-in game cheats. Doom supports a total of 15 cheats [12]

built into the game, of which only 10 are relevant in our context. The

Cheat O
u
r

A
p
p
r
o
a
c
h

C
/
S

P
B
[
2
9
]
/

V
A
C
[
3
5
]

A
S
[
4
1
]

N
E
O
[
5
2
]
/

S
E
A
[
4
7
]

R
A
C
S
[
8
1
]

P
2
P

R
C
[
5
7
]

Game

Bug ✓ ✓ ✗ ✓ ✓ ✓ ✓

RMT/Power Leveling ✓ ✓ ✗ ✗ ✗ ✓ ✓

Application

Information Exposure

Invalid Commands

✓ ✓ ✗ ✗ ✗ ✓ ✓

Bots/reflex enhancers ✗ ✗ ✓ ✗ ✗ ✗ ✗

Protocol

Suppressed update, Timestamp

Fixed delay, Inconsistency

N/A ✓ ✗ ✓ ✓ ✓ ✓

Collusion ✗ ✗ ✗ ✗ ✗ ✗ ✗

Spoofing, Replay ✓ ✓ ✗ ✗ ✓ ✓ ✓

Undo ✓ N/A ✗ ✓ ✗ N/A N/A

Blind opponent ✓ N/A ✗ N/A N/A ✓ N/A

Infrastructure

Information Exposure ✓ ✓ ✓ ✗ ✗ ✓ ✓

Proxy/Reflex Enhancers ✗ ✗ ✗ ✗ ✗ ✗ ✗

Table 3: Our approach v/s other anti-cheat mechanisms

(adapted from [80]).

remaining 5 do not affect the relevant game state at the server and

are thus not prevented by our approach. In fact, these cheats cannot

be detected even in C/S setting as they only impact client-side

rendering and the other players remain unaware of the changes.

In the interest of space, we describe two such cheats and their

mitigation.

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece S. Kalra et al.

• The IDDQD cheat makes the player immune to damage from other

players by preventing updates to the player’s health. It is impossible

to use this cheat in our approach since the other players who send a

SHOOT event damaging the malicious player will (i) reduce his health

according to the rules defined in the smart contract code, and (ii)

reach consensus on the asset’s reduced value. When invulnerability

is gained legally through a power up, peer consensus validates it,

and the smart contract ensures temporary immunity to the player.

• The IDCHOPPERS cheat provides the player with a chainsaw. A

player cannot use this cheat, since other players will not reach

consensus on his state that has a newweaponwithout traversing the

location on the map where the chainsaw is available for collection.

Application / Protocol / Infrastructure cheats. Our

approach splits the game logic into a smart contract and a game

client. The underlying blockchain platform ensures that the peers

run the exact same smart contract and any discrepancy would

result in the specific peer not being able to join the game. However,

it is possible that the peers may resort to cheating by patching

the game client itself. Even then, peer consensus on each relevant

game event can detect several classes of such client modifications,

and does no worse than the C/S architecture (per Table 3). It can

even prevent collusion when limited to minority set of players.

Detecting bots/reflex enhancers requires additional client-side

heuristics [29, 35], which is a requirement even for state-of-the-art

C/S games.

Cheat Prevention Latency. Note that the cheat itself may

have been enabled much earlier than when the cheat event affecting

the asset is dispatched. For example, the unlimited ammunition

cheat may have been applied earlier, however its prevention can

happen only when the available amount of ammunition has been

fired. Thus, we define cheat prevention latency as the duration

between the offending cheat event reaching the shim and the failure

notification received for the corresponding event.

To determine the minimum absolute latency of cheat prevention,

i.e., without considering the effects of Internet latencies and secure

enclaves, we select 3 sessions [14] and replay them on Docker

containers running on servers connected over a 1 Gbps LAN

setup, while we manually played a game as the fourth malicious

participant. We performed the experiment 10 times per cheat and

noted that our prototype was able to prevent cheating in under 34

ms across all scenarios for a four peer setup.

7.2.3 Effectiveness of Optimizations. We perform controlled

experiments to evaluate the effectiveness of the optimizations on

average event validation latency (per § 6). To simulate realistic FPS

gameplay, we constrain Swarm to place peers and Fabric services

on servers located within the continental US only. Inter-continental

online FPS gameplay is rare due to increased latencies. Due to the

unavailability of Brandenburger et al.’s implementation [43], we

do not deploy contracts in secure enclaves to preserve privacy.

We generate synthetic events (extracted from the sessions) and

drive the shim at the highest successful event input rate possible, i.e.,

the shim sends events to the contract immediately after receiving

validation notification for the previous event. This event rate is

determined empirically by the event generator described next.

Event generator. The time for ledger synchronization (per § 6)

is a configurable parameter and can be tweaked to maximize

network throughput. We write a script that uses binary search

to converge on the minimum state synchronization time, such that

there are zero commit failures when sending events operating on

the same KVS due to the acquired lock. The script then generates

events operating on the same KVS at this maximum throughput.

(1) Multi-threading: We evaluate the impact of a multi-threaded

shim on average event validation latency per peer for 5 threads,

with each thread sending events corresponding to one asset type

and operating at the highest possible input rate. We repeat the

experiment 1000 times with the peers ranging from 1 to 64 and

incremented exponentially, and block size set to one. Fig. 3c plots the

results. We observe per-asset event validation latencies of ∼104ms

and ∼247ms for 16 and 32 peer setups respectively. However, with

a 64 peer setup, the average latency goes up to ∼490ms.

Further, across the peer setups, use of a multi-threaded shim only

moderately shaves off the per-asset event validation latency over

the base case. While the decrease is attributed to the parallelization

of peer consensus across asset updates, the benefits are reduced as

ledger synchronization takes much more time than peer consensus

and is not amortized with a block size of one. Further, since smaller

peer configurations have much lower event validation latencies,

the relative benefits of multi-threading are more prominent.

(2) Transaction block size: We determine the impact of varying

block size by measuring the average event validation latency across

1000 runs for 5 different asset types with a multi-threaded shim

forwarding events to the smart contract at the highest possible

input rate. We vary the block size from 1 to 5, since events for only

5 asset updates are frequent. Note that the number of threads in

the multi-threaded shim must always be equal to the number of

assets, with each thread handling events for just one asset.

Fig. 3c plots the results. We observe that this optimization decreases

the average latency by 100ms for the 32 peer configuration and by

48ms for the 16 peer configuration, over the multi-threaded setup.

Overall, we note per-asset event validation latencies of ∼66ms and

∼147ms for 16 and 32 peer setups respectively, while with a 64

peer setup, the average latency stands at ∼415ms. We attribute

the improvement in average latency to amortization of the ledger

synchronization time of the event validation pipeline across the

5 transactions corresponding to each block. Since modern games

track more player assets, average latencies may decrease further

with increase in asset types and block size.

Discussion. With latencies of ∼147ms and below for an

intra-continental setup of 32 peers or less, our prototype can achieve

cheat prevention in real-time for most online games, including

those reported in our study in § 7.1. With 64 peers (or more), the

observed average event validation latency shoots up primarily due

to increased synchronization between the peers, which is magnified

by the intra-continental latencies. Further, use of secure enclaves for

privacy-preserving computation may increase the average latencies

by 10%-20% (per [43]).

However, recent advancements in areas, including blockchain

sharding [54, 67], consensus algorithms [72], and blockchain

technology [3, 31], can help reduce the average validation latencies

to match the needs of online gaming (see Table 2) for 64 or larger

peer setups.

Validity of results. There are two aspects to the evaluation of

our blockchain-based cheat detection approach that can potentially

Blockchain-based Real-time Cheat Prevention and Robustness ... CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

affect the validity of our results. First, the game traffic from the

Doom clients is non-encrypted, which eliminates the encryption /

decryption overheads. Second, our implementation and subsequent

evaluation does not leverage computation within secure enclaves.

A conservative encryption / decryption throughput per core when

using AES in modern processors ranges about ∼250MB/s [2]. With

four cores per CPU, the encryption and decryption overheads for

1KB data would range <1ms. Our approach requires one decryption

of the Doommessages to extract the asset values and one encryption

of these asset values on to the blockchain. Since majority of the

computation happens on smaller data sizes as Doom messages are

typically much less than 1KB, we can safely assume the overall

overhead due to the two decryption and encryption procedures to

be bounded at ∼1ms. A further overhead of 10%-20% due to the

secure enclave processing (per [43]) still keeps the average event

validation latencies to be well within the requirements for online

gaming.

7.2.4 Scalability and Robustness. We evaluate the scalability and

robustness of our approach in a 32 peer setup with event traffic from

the 10 longest (of 25) Doom sessions. The shim operates at the event

rate observed in the session. Further, we enabled all optimizations

and set the number of threads per peer and the block size to 5.

(1) Event batching: Only continuous events for the same asset

type can be batched to preserve event order (per § 4.2). Also, only

one batch of events corresponding to an asset type can be processed

at a time. In other words, if the shim creates two batches of the

location update event interleaved by a shoot event, then the second

batch of events will be dispatched to Fabric in the next time window

corresponding to the setup’s average event validation latency.

• We determine the effectiveness of batching by counting the

number of event delays (because they could not be batched in the

current time window and thus experienced a delay) and comparing

it with the count of event delays when no batching was applied.

Fig. 3d plots the results in log scale across all 10 sessions for a 32

peer setup. The maximum count of validation delays after batching

was just 62 for session #9, which was the longest running session

at 24 mins with over 25K events. Overall, we observe 10× to 1000×

reduction in event delays due to batching across all scenarios.

• We plot the variation in such delays across different setups for

session #9 in Fig. 3e. None of the setups, except the 32 peer case,

reported any delays in event validation due to batching. In contrast,

there were huge delays for 8, 16 and 32 peers without batching. Note

that the delays are dependent on the nature of events arriving at the

shim and the time window (corresponding to the average validation

latency for the setup) considered for computing the delays.

• Fig. 3f shows the cumulative effect of all optimizations on

throughput across different peer setups for session #9. We observe

that even for the 32 peer case, which has an average throughput of

∼7 transactions per second (per Fig. 3c), the cumulative effect of

our optimizations allow the game to proceed at the client tickrate

of 35. For the 1, 2, 4 and 8 peer setups, batching was not needed

since the default throughput was higher than required. In contrast,

for the remaining setups, the effects of batching outweigh all other

optimizations and ensure that the game proceeds normally.

• We also measure the frequency of batching and the average batch

size for the same experiment.We note that the highest average batch

Client # Transaction Delays

Tickrate p=1 p=2 p=4 p=8 p=16 p=32

30 0 0 0 0 0 62

60 0 0 0 0 33 85

90 0 0 0 38 56 99

120 0 0 3 56 65 112

150 0 5 15 66 73 121

Table 4: Transaction delay with varying client tickrate and

peer size (p).

size was ∼14 for the 32 peer case, which means a large number of

events were batched. This observation is corroborated by the fact

that location updates accounted for ∼99.3% of the total events. The

rest of the events can be handled with minimal batching.

(2) Application to modern games: Doom operates at a client

tickrate of 35. Modern games may, however, operate at client

tickrates of over 60. A good measure of the applicability of our

approach to modern games is the extent of delays introduced due

to batching. A small number of events experiencing delay is better.

We replay Doom traffic from session #9 at higher tickrates and

determine count of event delays for various peer setups. Table 4

lists the results. We observe that batching delays increase with

increase in peer count and tickrates. However, even with 32 peers

and at tickrate of 90, we observe just 99 potential delays. Also,

scaling tickrate does not affect cheat prevention latency; it just

increases the validation throughput due to event batching.

(3) Defense against DDoS: Our approach provides provable

defense against DDoS by design (recall § 2.2). For empirical evidence,

we observe the effects on event validation throughput for 8 and

16 peers with number of faulty nodes at 12.5%, 25% and 37.5%. We

replay an event trace from Doom session #9 across all peers and

note that the throughput remains the same even in the presence of

malicious peers. We attribute this behavior to majority consensus

that is still achievable in blockchain-based peer networks.

7.3 Case Studies

(i) Extensibility. Doom stores all the external data of a game

(sounds, sprites, textures etc.) in the WAD file format. The

community augments the game by developing patches to the

original WAD file and distributing the mods in the PWAD file

format. We use the -merge command in the recent port of Doom

to introduce new weapon sprites into the game in the PWAD file

format. This allows us to change the visual look of the weapons

in the game. To change the logical behavior of each weapon, we

make appropriate changes in the smart contract. For example, we

made a weapon that never ran out of ammunition by disabling the

reduction in ammunition in the smart contract, and a weapon with

maximum damage by increasing the damage quantifier. A similar

approach can be used to introduce newmonsters that can withstand

higher damage, making the game harder than intended.

(ii) Non-repudiation. We apply our approach to C/S-based

Monopoly [26], a full information multi-player game where all

claims can be verified through the blockchain’s event log. Besides

the smart contract, we added a robust, off-chain distributed random

number generator (using [40]) to simulate an unbiased dice roll

in a decentralized setting. Smart contract generation was trivial

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece S. Kalra et al.

as player assets are limited to currency and property. Property is

defined on color basis, and has an owner and price attribute. Each

player has 3 attributes: location, currency and assets[].

8 LIMITATIONS & FUTUREWORK

(1) The adoption of our approach cannot be incremental and

requires a fundamental change to the online gaming ecosystem,

involving publishers, developers and players.

(2) A server in a C/S model may allow custom event order to enable

better client experience. For example, servers may prioritize SHOOT

events over location updates, allowing clients to update their state.

Our approach relies on the blockchain’s ordering service to finalize

an order for client events.

(3) Our approach uses an aggressive batching strategy that, in the

worst case, may only parallelize two transactions per tick with other

transactions creating a conflict. This behavior may interfere with

smooth entity interpolation at the client introducing jitters, and is

comparable to a slow server scenario. However, it is improbable

and can be mitigated by a smart selection of assets to be tracked.

(4) While some C/S games allow players to join in the middle of a

game, our approach mandates that no player can join in the midst

of a game session. This limitation is because it is hard to determine

a fair starting state for the new player.

(5) Unlike in C/S setting, our prototype reports increasing

validation latency with increasing peers, and cannot currently scale

to massively multi-player online role-playing games (MMORPGs)

involving thousands of users. However, recent advancements [3,

31, 54, 67, 72] can help mitigate the issue and blockchain-based

MMORPGs may be feasible in future.

(6) While the optimizations presented earlier help understand the

effectiveness of our approach in the context of the game traffic,

determining the exact impact on the client requires a user study,

which we leave for future work.

9 RELATEDWORK

9.1 P2P Cheat Detection and Prevention

P2P games run the exact simulation on each client, passing identical

commands and executing them in exactly the same way at clients

to have identical effects on the games. This technique is much

simpler and robust than sending each client’s state to everyone and

then validating them. Prior work [41, 47–49, 52, 57, 81] implement

this Lockstep technique and its variants. In contrast, our approach

does not run a simulation on every client; it instead requires

consensus on every player action. Thus, it adopts the C/S strategy

for validation but without the need for a trusted intermediary.

9.2 Other Cheat Detection Techniques

Accountability. PeerReview [56] uses tamper-evident logging

to detect when a node deviates from the expected algorithm.

However, it must be closely integrated with the application, which

requires code modifications and a detailed understanding of the

application logic. AVMs [55], on the other hand, use logging

to record all incoming/outgoing messages and ensure correct

execution of remote processes. Both these systems require a

reference implementation, which entrusts faith in a single entity,

and can only retroactively detect misbehavior/cheating and not

prevent it. In contrast, our approach leverages consensus and a

smart contract that encodes server-side logic to prevent cheating

in real-time.

Client Validation. Bethea et al. [42] employ symbolic

execution to extract constraints on client-side state, and use them

to determine if the sequence of messages can be explained by

any possible inputs. Fides [58] is an anomaly-based approach

where a server-side controller specifies how and when a client-side

auditor measures the game. To validate the measurements, the

controller partially emulates the client and collaborates with the

server. Mönch et al. [70] propose a framework that employs mobile

guards, i.e., small pieces of code dynamically downloaded from

the game server, to validate and protect the client. In contrast, our

approach does not require any client-side emulation/simulation,

which is heavy-weight and not scalable. However, it requires a shim

and a contract that enables server-side functionality.

Trusted Computing. It requires a third-party (either

hardware/software) to monitor all client behavior and prevent

modifications to game binaries or run cheating programs,

such as compromised shared libraries to implement bot/reflex

enhancers. Schluessler et al. [73] utilize a tamper-resistant

environment to detect bot generated input. However, such

client-side solutions, including commercial efforts [29, 35], pose

privacy concerns and have met with strong user resistance [30].

A2M [44] and TrInc [66] share the same goal as our decentralized

blockchain-based technique, i.e., to remove participants’ ability

to equivocate. However, they do so using a trusted component

but without incurring any communication overheads that are

typically involved with decentralized approaches, including

our approach and PeerReview. Moreover, our approach uses

techniques from [43] developed for Fabric blockchain platform to

enable privacy-preserving asset computation instead of proving

equivocation.

Human Interaction/Behavior Proofs. Gianvecchio et
al. [53] propose an approach to differentiate bots from humans by

passively monitoring actions that are difficult for bots to perform

in a human-like manner. Yampolskiy et al. [82] use an interactive

mechanism that embeds CAPTCHA tests in card-based games. In

contrast, our approach is real-time, yet non-intrusive to the players,

and needs no extra client-side effort to handle cheating.

10 CONCLUSION

Wedevelop a novel yet concrete application of blockchain to prevent

a class of cheats where the reported client state is inconsistent with

the observed state at the server. Use of blockchain provides the

robustness of P2P architecture, and the flexibility to customize

games via smart contracts. We evaluate our approach on the

multi-player game Doom and show that it prevents cheats in

<150ms for 32 peers deployed across the Internet, and scales to

client tickrates for modern games. We also show the extensibility

of our approach by customizing Doom with new weapons and their

accompanying logic.

Blockchain-based Real-time Cheat Prevention and Robustness ... CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

11 ACKNOWLEDGEMENTS

We thank our shepherd, Ben Zhao, and the anonymous reviewers

for their insightful comments. We are also grateful to Seep Goel

and Praveen Jayachandran for their feedback.

REFERENCES

[1] 2011 PlayStation Network outage. https://goo.gl/28eaFb.
[2] AES-NI SSL Performance.

https://calomel.org/aesni_ssl_performance.html.
[3] BitShares. https://goo.gl/x3j2f6.
[4] Blockchain can fight cyberattacks. https://goo.gl/gwVPxk.
[5] Blockchain Could Have Prevented DDoS. https://goo.gl/ghmhqX.
[6] Blockchain DDoS attacks. https://goo.gl/Hux2yB.
[7] Blockchain Deters DDoS Attacks. https://goo.gl/HvtmTE.
[8] Blockchain is so hyped right now and many companies will get burned.

https://www.cnbc.com/2018/06/06/blockchain−is−so−
hyped−right−now−and−many−companies−will−get−burned.
html.

[9] Blockchain will protect us. https://goo.gl/tM16FN.
[10] Business of video game cheating. https://goo.gl/5tKP2A.
[11] Chocolate Doom. https://www.chocolate−doom.org/.
[12] Chocolate Doom Cheats. https://goo.gl/svBJUV.
[13] DDoS attack on Xbox and PlayStation. https://goo.gl/VnbxYe.
[14] Doom Demos. https://doomwiki.org/wiki/Demo.
[15] Dubai Blockchain Strategy. https://smartdubai.ae/en/

Initiatives/Pages/DubaiBlockchainStrategy.aspx.
[16] Everledger. https://www.everledger.io/.
[17] Final Fantasy XIV DDoS. https://goo.gl/5im94A.
[18] FPS games for Linux/SteamOS. http://store.steampowered.com/tag/

en/Action/#tag%5B%5D=1663&category%5B%5D=1&os5B%5D=
linux&p=0&tab=PopularNewReleases.

[19] Gametracker. https://www.gametracker.com/.
[20] GTA V Modding Community Explodes. https://goo.gl/haHqNy.
[21] How latency is killing online gaming. https://venturebeat.com/2016/

04/17/how−latency−is−killing−online−gaming/.
[22] Hyperledger Fabric. https://goo.gl/RLfhyo.
[23] Intel SGX. https://software.intel.com/en−us/sgx.
[24] Jennifer. https://github.com/dave/jennifer.
[25] Mod (video gaming). https://goo.gl/SYMfk1.
[26] Monopoly. https://github.com/gmichaeljaison/monopoly.
[27] Pokemon GO down. https://goo.gl/i5CuoQ.
[28] ’private blockchain’ is just a confusing name for a shared database. https://

freedom−to−tinker.com/2015/09/18/private−blockchain−
is−just−a−confusing−name−for−a−shared−database/.

[29] Punkbuster. http://evenbalance.com/.
[30] Punkbuster is hard to remove. https://goo.gl/Xr1FM9.
[31] Red Belly Performance. https://goo.gl/9kzjuL.
[32] SoftLayer Cloud Platform. http://www.softlayer.com/.
[33] Steam servers DDoSed. https://goo.gl/vnqRrv.
[34] ULTIMATE DOOM DEMOS. https://goo.gl/rbVTfD.
[35] Valve Anti-Cheat System (VAC). https://goo.gl/Wh6M5h.
[36] What is the maximum playable latency for FPS games ?

http://www.mmo−champion.com/threads/751681−What−is−
the−maximum−playable−latency−for−FPS−games.

[37] What’s the max ping you consider acceptable for FPS?

https://forums.anandtech.com/threads/whats−the−max−
ping−you−consider−acceptable−for−fps.2176896/.

[38] Why blockchain hype must end.

https://channels.theinnovationenterprise.com/articles/
why−blockchain−hype−must−end.

[39] Xbox Live DDoS attack. https://goo.gl/nUw9CP.
[40] B. Awerbuch et al. Robust random number generation for peer-to-peer systems.

Theor. Comput. Sci.
[41] N. E. Baughman et al. Cheat-proof Playout for Centralized and Peer-to-peer

Gaming. IEEE/ACM Trans. Netw.
[42] D. Bethea et al. Server-side Verification of Client Behavior in Online Games. In

NDSS ’10.
[43] M. Brandenburger et al. Blockchain and Trusted Computing: Problems, Pitfalls,

and a Solution for Hyperledger Fabric, 2018.

https://arxiv.org/pdf/1805.08541.pdf.
[44] B.-G. Chun et al. Attested Append-only Memory: Making Adversaries Stick to

Their Word. In SOSP ’07.
[45] M. Consalvo. Cheating: Gaining advantage in Video Games.

[46] M. Consalvo. There is No Magic Circle. Games and Culture, 2009.
[47] A. B. Corman et al. A Secure Event Agreement (SEA) Protocol for Peer-to-peer

Games. In ARES ’06.
[48] A. B. Corman et al. A Secure Group Agreement (SGA) Protocol for Peer-to-Peer

Applications. In AINAW ’07.
[49] E. Cronin et al. Cheat-Proofing Dead Reckoned Multiplayer Games. In ICADCG

’03.
[50] M. DeLap et al. Is Runtime Verification Applicable to Cheat Detection? In

NetGames ’04.

https://goo.gl/28eaFb
https://calomel.org/aesni_ssl_performance.html
https://goo.gl/x3j2f6
https://goo.gl/gwVPxk
https://goo.gl/ghmhqX
https://goo.gl/Hux2yB
https://goo.gl/HvtmTE
 https://www.cnbc.com/2018/06/06/blockchain-is-so-hyped-right-now-and-many-compan ies-will-get-burned.html
 https://www.cnbc.com/2018/06/06/blockchain-is-so-hyped-right-now-and-many-compan ies-will-get-burned.html
 https://www.cnbc.com/2018/06/06/blockchain-is-so-hyped-right-now-and-many-compan ies-will-get-burned.html
https://goo.gl/tM16FN
https://goo.gl/5tKP2A
https://www.chocolate-doom.org/
https://goo.gl/svBJUV
https://goo.gl/VnbxYe
https://doomwiki.org/wiki/Demo
https://smartdubai.ae/en/Initiatives/Pages/DubaiBlockchainStrategy.aspx
https://smartdubai.ae/en/Initiatives/Pages/DubaiBlockchainStrategy.aspx
https://www.everledger.io/
https://goo.gl/5im94A
 http://store.steampowered.com/tag/en/Action/#tag%5B%5D=1663&category%5B%5D=1&os5B%5D=linux&p=0&tab=PopularNewReleases
 http://store.steampowered.com/tag/en/Action/#tag%5B%5D=1663&category%5B%5D=1&os5B%5D=linux&p=0&tab=PopularNewReleases
 http://store.steampowered.com/tag/en/Action/#tag%5B%5D=1663&category%5B%5D=1&os5B%5D=linux&p=0&tab=PopularNewReleases
https://www.gametracker.com/
https://goo.gl/haHqNy
https://venturebeat.com/2016/04/17/how-latency-is-killing-online-gaming/
https://venturebeat.com/2016/04/17/how-latency-is-killing-online-gaming/
https://goo.gl/RLfhyo
https://software.intel.com/en-us/sgx
https://github.com/dave/jennifer
https://goo.gl/SYMfk1
https://github.com/gmichaeljaison/monopoly
https://goo.gl/i5CuoQ
 https://freedom-to-tinker.com/2015/09/18/private-blockchain-is-just-a-confusing- name-for-a-shared-database/
 https://freedom-to-tinker.com/2015/09/18/private-blockchain-is-just-a-confusing- name-for-a-shared-database/
 https://freedom-to-tinker.com/2015/09/18/private-blockchain-is-just-a-confusing- name-for-a-shared-database/
http://evenbalance.com/
https://goo.gl/Xr1FM9
https://goo.gl/9kzjuL
http://www.softlayer.com/
https://goo.gl/vnqRrv
https://goo.gl/rbVTfD
https://goo.gl/Wh6M5h
 http://www.mmo-champion.com/threads/751681-What-is-the-maximum-playable-latency- for-FPS-games
 http://www.mmo-champion.com/threads/751681-What-is-the-maximum-playable-latency- for-FPS-games
 https://forums.anandtech.com/threads/whats-the-max-ping-you-consider-acceptable- for-fps.2176896/
 https://forums.anandtech.com/threads/whats-the-max-ping-you-consider-acceptable- for-fps.2176896/
 https://channels.theinnovationenterprise.com/articles/why-blockchain-hype-must-e nd
 https://channels.theinnovationenterprise.com/articles/why-blockchain-hype-must-e nd
https://goo.gl/nUw9CP
https://arxiv.org/pdf/1805.08541.pdf

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece S. Kalra et al.

[51] W.-c. Feng et al. Stealth Measurements for Cheat Detection in On-line Games.

In NetGames ’08.
[52] C. GauthierDickey et al. Low Latency and Cheat-proof Event Ordering for

Peer-to-peer Games. In NOSSDAV ’04.
[53] S. Gianvecchio et al. Battle of Botcraft: Fighting Bots in Online Games with

Human Observational Proofs. In CCS ’09.
[54] Y. Gilad et al. Algorand: Scaling byzantine agreements for cryptocurrencies. In

SOSP ’17.
[55] A. Haeberlen et al. Accountable Virtual Machines. In OSDI ’10.
[56] A. Haeberlen et al. PeerReview: Practical Accountability for Distributed Systems.

In SOSP ’07.
[57] P. Kabus et al. Design of a Cheat-resistant P2P Online Gaming System. In

DIMEA ’07.
[58] E. Kaiser et al. Fides: Remote Anomaly-based Cheat Detection Using Client

Emulation. In CCS ’09.
[59] G. King et al. Tomb Raiders and Space Invaders: Videogame Forms and Contexts. I.

B. Tauris, 2006.

[60] J. Kücklich. Precarious playbour: Modders and the digital games industry.

Fibreculture, 2005.
[61] J. Kücklich. Homo Deludens: Cheating as a Methodological Tool in Digital

Games Research. Convergence, 2007.
[62] J. Kücklich. Wallhacks and Aimbots: How Cheating Changes the Perception of

Gamespace. Space Time Play: Computer Games, Architecture and Urbanism, 2007.

[63] J. Kücklich. Forbidden pleasures: Cheating in computer games. The pleasures of
computer gaming, 2008.

[64] J. Kücklich. Virtual Worlds and Their Discontents: Precarious Sovereignty,

Governmentality, and the Ideology of Play. Games and Culture, 2009.
[65] R. Kumaresan et al. How to Use Bitcoin to Play Decentralized Poker. In CCS ’15.
[66] D. Levin et al. TrInc: Small Trusted Hardware for Large Distributed Systems. In

NSDI ’09.
[67] L. Luu et al. A Secure Sharding Protocol For Open Blockchains. In CCS ’16.

[68] T. M. Malaby. Beyond Play: A New Approach to Games. Games and Culture,
2007.

[69] S. Matetic et al. ROTE: Rollback Protection for Trusted Execution. In USENIX
Security ’17.

[70] C. Mönch et al. Protecting Online Games Against Cheating. In NetGames ’06.
[71] S. Morris. WADs, Bots and Mods: Multiplayer FPS Games as Co-creative Media.

In DiGRA ’03.
[72] R. Pass et al. Thunderella: Blockchains with optimistic instant confirmation. In

Eurocrypt ’18.
[73] T. Schluessler et al. Is a Bot at the Controls?: Detecting Input Data Attacks. In

NetGames ’07.
[74] D. Spohn. Cheating in Online Games. https://www.lifewire.com/

cheating−in−online−games−1983529.
[75] I. Stoica et al. Chord: A Scalable Peer-to-peer Lookup Service for Internet

Applications. In SIGCOMM ’01.
[76] R. Strackx and F. Piessens. Ariadne: A minimal approach to state continuity. In

USENIX Security ’16.
[77] T. Taylor. Power games just want to have fun?: instrumental play in a MMOG.

In DiGRA ’03.
[78] T. L. Taylor. Play Between Worlds: Exploring Online Game Culture. The MIT

Press, 2006.

[79] T. L. Taylor. Pushing the borders: Player participation and game culture.

Structures of participation in digital culture, 2007.
[80] S. D. Webb et al. A survey on network game cheats and P2P solutions. In AJIIPS

’08.
[81] S. D. Webb et al. RACS: A referee anti-cheat scheme for P2P gaming. In

NOSSDAV ’07.
[82] R. V. Yampolskiy et al. Embedded Noninteractive Continuous Bot Detection.

Comput. Entertain.
[83] A. C. Yao. Protocols for Secure Computations. In FOCS ’82.

https://www.lifewire.com/cheating-in-online-games-1983529
https://www.lifewire.com/cheating-in-online-games-1983529

	Abstract
	1 Introduction
	2 Motivation
	2.1 Peer Consensus as Anti-cheat
	2.2 Online Games Most Vulnerable to DoS

	3 Background
	3.1 Blockchain and Smart contracts
	3.2 Attack Model
	3.3 Game Model

	4 Our Approach
	4.1 Smart contract
	4.2 Shim

	5 Discussion
	6 Implementation
	7 Evaluation
	7.1 Study of Modern Games
	7.2 Our Approach
	7.3 Case Studies

	8 Limitations & Future Work
	9 Related Work
	9.1 P2P Cheat Detection and Prevention
	9.2 Other Cheat Detection Techniques

	10 Conclusion
	11 Acknowledgements
	References

